Total No. of Questions : 4]	<u>~</u>	SEAT No. :
PE48	[6579]-350	[Total No. of Pages : 1

T.E. (Electronics and Telecommunication) (Insem) ELECTROMAGNETIC FIELD THEORY (2019 Pattern) (Semester - I) (304182)

		(2019 Pattern) (Semester - I) (304182)	
Time	e : 1	Hour] [Max. M	<i>Marks</i> : 30
		ions to the candidates:	
	<i>1</i>)	Solve Q.1 or Q.2, Q.3 or Q.4.	k .
	<i>2</i>)	Neat diagram must be drawn wherever necessary.	
	<i>3</i>)	Figures to the right indicate full marks.	
	<i>4</i>)	Use of electronic packet calculator and smith chart is allowed.	
	<i>5</i>)	Assume suitable data, if necessary.	
Q1)	a)	State and Prove Gauss's Law.	[6]
	b)	The electric potential near the origin of a system of co-ord	inates is
		$V = 5x^2 + 8y^2 + 10z^2$. Find the electric field at a point A (1,2,3).	[6]
	c)	Define Electric Field intensity and derive its expression for point c	harge.[3]
	,	OR	0 1 1
Q2)	a)	Two point charges -4μ C and 5μ C are located at (2,-	-1.3)and
۷-)	u)	(0,4,-2) respectively. Find the potential at $(1,0,1)$ assuming zero	
		at infinity.	[6]
	b)		
	b)	Derive an expression for the potential gradient $E=-\nabla V$.	[5]
	c)	Explain the physical significance of gradient and divergence.	[4]
Q3)	a)	State Ampere's circuital law. Find magnetic field intensity H	due to an
		infinitely long straight current carrying conductor using Ampere	's law.[7]\
	b)	The point Q=18 nC is has velocity of 5x 106 m/s in the direction	$a_{y} = 0.60$
		$a_x + 0.75a_y + 0.30a_y$ calculate the magnitude of force exerted on the	
		by the field,	\sim [6]
		i) Electric field intensity $E=-3 a_x + 4a_y + 6 a_z \text{ kV/m}$	
		ii) Magnetic flux density $B=-3 a_x + 4a_y + 6 a_z mT$	•
	c)	Define and explain Biot-Savart's law.	[2]
	<i>C)</i>	OR	[-]
Q4)	a)	Find the vector current density in rectangular coordinate systems.	tem at Δ
QŦ)	<i>a)</i>	(2,3,4) if Magnetic field intensity $H=x^2z$ a, $y = x$ a. Am.	[6]
	b)	Find magnetic field intensity H due to a circular current carrying	
4	b)		
		the axis of a loop using Ampere's law	[7]
	c)	State and explain Lorenz force equation.	[2]
		6.	
1	1		

(8) (8) (8)