	. of Questions : 4] SEAT No. :
PE47	[Total No. of Pages : 2
	T.E. (E & TC/Electronics/Electronics(VLSI Design &
Technology)) (Insem)	
DIGITAL COMMUNICATION	
	(2019 Pattern) (Semester - I) (304181)
Time: 1	_
Instructi 1)	ons to the candidates: Answer any one Question out of Q.No. 1 or 2 and Q.No. 3 or 4.
2)	Neat diagrams must be drawn wherever necessary.
3)	Figures to the right indicate full marks.
4)	Assume suitable data, if necessary.
<i>Q1</i>) a)	Show that if a wide sense stationary process X(t) is passed through a LTI
2 / 11/	filter with impulse response h(t), then its output has constant mean square
	value. [7]
b)	Explain Ergodic Process [3]
c)	Show that the random process $X(t) = A\cos(\omega_c t + \Phi)$ where Φ is a
	random variable Uniformly distributed in the range $(0,2\pi)$ is a wide sense
	stationary process. [5]
	OR .
Q2) a)	Explain classification of random process. [7]
b)	List different sources of Noise. Explain narrow ban noise and represent a
	narrow band noise in terms of in phase and quadrature component. [8]
Q3) a)	In a digital modulation stystem, the bit rate of NRZ data is 1 Mbps and
	carrier frequency is 100 MHz and average energy is 0.02 unit. Find the
	symbol rate of transmission, Euclidian distance 0 and bandwidth required
	for following techniques: [8]
	i) BPSK
	ii) QPSK
O.	iii) 16-PSK systems
b)	Explain M-ary PSK transmitter & receiver. [7]
つ	OR &
**	
	P.T.O.

Describe offset QPSK generation with neat schematic, waveforms and **Q4**) a) Signal space representation. Compare BPSK, QPSK and BFSK with reference to following points b) **[7]** Mathematical expression i) Symbol duration ii) iii) Probability of Error Bandwidth iv) Euclidean distance v) Spectrum vi) Signal Space Representation 9.28.20.25. The state of the st [6579]-349