Total No. of Questions :8]

[6262]-94

PB3832 [Total No. of Pages : 3]

SEAT No. :

T.E.(Electronics & Telecommunication) ELECTROMAGNETIC FIELD THEORY (2019 Pattern)(Semester -**I)(304182)** (2019 Patte)
 $[ours]$

to the candidates:
 $[ours]$
 $[oures]$
 $[ou$ 9. of Questions :8|

32 [6262]-94

T.E. (Electronics & Telecom

ELECTROMAGNETIC FIE

(2019 Pattern) (Semester
 $\frac{1}{2}$ Hours]

ions to the candidates:

Solve Q.No.Tor Q.No.2, Q.No.3 or Q.No.4, Q

Figures to the right si

Time : 2½ Hours] [Max. Marks :70 Instructions to the candidates:

- *1) Solve Q.No.1or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6, Q.No.7 or Q.No8.*
- *2) Figures to the right side indicate full marks.*
- *3) Assume suitable data, if necessary.*
- *Q1)* a) Derive the boundary condition between Conductor and Free space for static electric field. **[8]**
	- b) Derive an expression for energy stored and energy density in electrostatic field. **[9]** OR
- *Q2)* a) $\overline{\triangledown}$ for a parallel plate capacitor area of plate $A=12$ cm² spacing between plates d=5 mm, separated by dictectric of ε = 12, connected to a 40 V battery find: Capacitance, Electric field intensity E, flux density D and an energy stored in the capacitor. **[8]** OR

expaction area of plans

parated by dictectric distance, Electric field

the capacitor,

principal which
 $\frac{1}{3}\mu r_2 = 4$, $H_1 = 30$ a
- b) Region-1 is semi-infinite space in which $2x-5y > 0$, while for region-2, $2x-5y<0$. Let $\mu r_1 = 3$, $\mu r_2 = 4$, H₁=30 a_x³ A/m. Find B₁, H₁₂, H_{N2}and H₂. (Magnetic flux density in region 1-B₁, Tangential component of Magnetic field intensity in region $2 - H_{12}$, Normal component of Magnetic field intensity in region $2\frac{H_{N2}}{2}$ and Magnetic field intensity in region $2\frac{H_{2}}{2}$. [9] mdary condition between Conductor and leads

eld.

eld.

Solate capacitor area of plate A=12 cm² spa

plate capacitor area of plate A=12 cm² spa

plate capacitor area of plate A=12 cmne

ppacitance, Electric field int
- *Q3)* a) State and explain Maxwell's equations for time varying field in detail.
- b) State and explain the Faradays ' law and Lenz's law with suitable example. **[8]** Solid to the varying field
aw and Lenz's law
leetric constant of ic
leetric constant of ic

OR

At frequency of 3000 MHz, the dielectric constant of ice made from pure water has values of 3.20, while the loss tangent is 0.0009. If a uniform plane wave with a amplitude of 100 \sqrt{m} at $z = 0$ is propagating through such ice, find the time-average power density at $z = 0$ and $z = 10$ m for the given frequency. **[8]** 1 which $2x - 3y > 0$, while for region-2,
 $x = 30$ a, x^2 A/m. Find B₁,H₁₂,H_{N2} and H₂,
 $-$ B₁, Tangential component of Magnetic-Geld

netic field intensity in region 2.4H₂). [9]

tions for time varying field

P.T.O.

[10]

b) Let $\mu = 10^{-5}$ H/m = 4 × 10⁻⁹F/m, $\sigma \approx 0$, and $\rho v = 0$. Find k (including units) so that each of the following pairs of fields satisfies Maxwell's equations:

(i) D = 6a*^x* -2y a*^y* +2z a*z* nC/m2 , H =kx a*^x* +10y ay - 25z az A/m; (ii) E = (20ykt)a*^x* V/m, H=(y+2×106 t)a*^z* ––-utyyy f{[][dsdfdfcvv[9] Jhdijsdjhhsdhjshyyutyu[[[szdsdsxfdgfg

A/m. **[10]**

- *Q5)* a) Derive the Helmholtz Wave Equation in terms of electric field intensity and magnetic field intensity for the charge free region. **[8]**
- b) A 9.375-GHz unifrom plane wave is propagating in polyethylene with $\epsilon = 2.26$, $\mu_r = 1$. If the amplitude of the electric field intensity is 500 V/m and the material is assumed to be lossless, find: **[10]** [10] $u_r = 1$. If the amplitude of the electric field interial is assumed to be lossless, find.

exercise in the polyethlene

ity of propagation

sic impedance

tude of the magic field intensity.

Six: Phase velocity, Group Vel (1) E = (20y-kt)a, V/r

Derive the Helmholtz

nd magnetic field inte

A 9.375-GHz unifron

with $\epsilon = 2.26$, $\mu_r = 1$. Let $\mu = 10^{-5}$ H/m = 4 × 10⁻⁹F/m, $\sigma = 0$,
units) so that each of the following pa
equations:
(i) D = 6a_x-2y a_y+2z a_z nC/m², $H = kx$ a_x
(ii) E = (20y-kt)a_xV/m, $H=(y+2\times10^{6}t)$;
Derive the Helmholtz Wave Equ
	- i) The phase constant
	- ii) The wavelength in the polyethlene
	- iii)^{The velocity of propagation}
	- iv) The intrinsic impedance
	- $\sqrt[n]{v}$ The amplitude of the magic field intensity.
- *Q6)* a) Define the terms: Phase velocity, Group Velocity, propagation constant, wavelength and intrinsic impedance. mpedance

of the magic field int

CR

hase velocity, Group

rinsic impedance.

OR

- b) Derive the expression for reflection coefficient and transmission coefficient for normal incidence of uniform plane wave. **[10]**
- *Q7*) a) A lossless transmission line with $Z_0 = 75 \Omega$ is 30m long and operates at 2MHz. The line is terminated with a load $Z_{\text{I}}=90 + 160 \Omega$. If velocity u=0.6c on the line, where C is velocity of light using Smith chart **[10]** =75 Ω is 30m long and
a load Z_L =90 \rightarrow 60 Ω
y of light using Smith
and Cega is 300 to 60 Ω
where the small stars of transfer than $Z_0 = 75 \Omega$ is 30m long and operates at
the a load $Z_1 = 90 - 60 \Omega$. If velocity
ocity of light using Smithchart [10]
condary constants of transmission
condary constants of transmission [7]
	- i) Reflection coefficient
	- ii) Standing wave ratio
	- iii) Input impedance
	- iv) Load admittance
	- State and explain primary and secondary constants of transmission \sum [7]

[6262]-94 2

[6262]-94 3 *Q8)* a) A generator of 1v, 1 KHz supplies power to a 100 Km open wire transmission line terminated ip Z0. The line parameters are, $R=10.4 \Omega/Km$, L=0.00367 H/Km, G=0.8×10⁻⁶ mho/Km, C=0.00835×10-6 F/Km. Calculate $Z_0 \alpha, \beta, \lambda$, and velocity (v). b) Derive general, soution of transmission line. Also explain its physical significance. **[8]** Derive general, soution of transmission line
ignificance. Case Co. 2009 1300 C 49.21 March 1988 Static 238 Static A generator of 1v, 1 KHz supplies-
transmission line terminated tip²Z
R=10.4 Ω /Km, L=0.00367 H/Km,
C=0.00835×10⁻⁶ F/Km.
Calculate Z₀ α , β , λ , and velocity (v).
Derive general, soution of transmission
signifi CEGRO 13091 49.21.26.2000 13.38.2000 13.38.2000 13.38.2000 13.38.2000 13.38