P-7592

SEAT No. :

[Max. Marks : 70

[6180] 107 T.E. (E & TC Engineering) ELECTROMAGNETIC FIELD THEORY (2019 Pattern) (Semester - I) (304182)

Time : 2¹/₂ Hours]
Instructions to the candidates:

Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
Figures to the right indicate full marks.

- 3) Assume suitable data if necessary.
- 4) Use of a calculator is allowed.
- 5) Near diagrams must be drawn wherever necessary

Q1) a) For a parallel plate capacitor, area of plate $A = 120 \text{ cm}^2$, spacing between plates d = 5mm, separated by dielectric of -cr = 12, connected t₀ 40V battery. Find [8]

i) Capacitance

- ii) E
- iii) D
- iv) Energy stored in Capacitor
- b) Derive boundary conditions that exist between two different magnetic materials. [10]

OR

Q2) a) Derive an expression for capacitance parallel plate capacitor. [8] b) A boundary exists at Z = 0 between two dielectrics crl=2.5 in region Z<0 and cr2=4 in region Z>0. The field in the region crl is $E=30a_x + 50a_y + 70a_y$ v/m. Find [10]

- i) Normal Component of E₁
- ii) Tangential Component of E₁
- iii) Angle α_1 between E_1 and normal to surface
- iv) Normal Component of D₂
- v) Tangential Component of D₂
- vi) Angle α_2 between D_2 and normal to surface

- Q3) a) State and prove Poynting theorem. State significance of Poynting Vector.
 - b) What do you mean by displacement current. Prove that displacement current density is given by $J_d = \partial D/\partial t$. [10]
- **Q4)** a) Given $H=H_m e^{j(wt+\beta z)} a_x a/m$ in free space. Find E using Maxwell equation. [8]
 - b) Write Maxwell equation for free space in point form and integral form for static electric field. [10]
- Q5) a) Find the skin depth of frequency of 1.6MHz in aluminium whose $\sigma = 38.2$ Ms/m and $\mu_r = 1.0$. Also find propagation constant and wave velocity. [8]
 - b) Derive the wave equation for free space in terms of electric field intensity. [8]

OR

- Q6) a)For uniform plane waves explain Depth of penetration.[8]b)For uniform plane waves explain the term Snell's Law.[8]
- **Q7)** a) A generator of IV, 1KHz supplies power to 100 km long transmission line, terminated in Zo and having following parameters. $R = 10.4 \Omega/km$, L = 0.00367 H/km, $G = 0.8 \times 10^{-6}$ mho/km and $C = 0.00835 \times 10^{-6}$ F/km. Calculate characteristics impedance, propagation constant, reflection coefficient K. [8]
 - b) What is meant by dissipation less line? Derive an expression for input impedance of dissipation less line. [10]

OR

- **Q8)** a) A transmission line cable has following primary constants $R = 11 \Omega/km G = 0.8 \mu mho/km L = 0.00367 H/km C = 8.35 nF/km at$ a signal of 1khz calculate : [10]
 - \bigcirc Characteristic Impedance Z_0
 - ii Attenuation Constant a Np/km
 - iii) Phase Constant β radians/km
 - iv) Wave Length λ in km
 - v) Velocity of signal in km/sec
 - b) A transmission line has a characteristic impedance $69 < -12^{\circ}\Omega$ is terminated 200 Ω resistor. Determine [8]
 - i) VSWR
 - ii) Reflection coefficient

[6180]-107