P758

SEAT No. :

[Total No. of Pages : 2

[5870] - 1062 T.E. (E & TC)

ELECTROMAGNETIC FIELD THEORY (2019 Pattern) (Semester - I) (304182)

Time : $2^{1/2}$ Hours]

Instructions to the candidates :

[Max. Marks : 70

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- 5) Use of logarithmic tables slide rule, mollier charts, electronic pocket calculator and steam tables is allowed.
- Q1) a)Derive the boundary condition between two perfect dielectric.[10]b)Electric field intensity $\overline{E} = 60\overline{ax} + 20\overline{ay} 30\overline{az}$ V/m at a point on the interface between air and a conducting surface. Find \overline{D} & ρ_s at that point.[8]

OR

- Q2) a) The two concentric spherical shells having inner radius is 0.1m and its potential is 0 Volts. The outer radius is 0.2m and its potential is 100 Volts. The medium between them is a free space. Find \overline{E} and \overline{D} using spherical coordinate system.
 - b) Derive Poisson's and Laplace equation.
- Q3) a) Derive an expression for magnetic vector potential in the region surrounding an infinitely long straight current carrying conductor along z-direction.
 - b) Explain motional e.m.f. and transformer e.m.f.

OR

- Q4) a) In free space $\overline{E} = 20\cos(wt 50x)\overline{a_y} \frac{v}{m}$. Calculate current density and magnetic field intensity. [9]
 - b) Write Maxwell's equation in differential and integral form for good conductor. [8]

P.T.O.

[8]

[8]

- Derive electromagnetic wave equation E & H in phasor form. **Q5**) a) [9]
 - A uniform plane wave is travelling at a velocity of 3.5×10^5 m/s having b) wavelength 0.35mm in a non-magnetic good conductor. Find the frequency of wave and the conductivity of a medium. [9]
 - **OR**
- What is polarization of uniform plane wave? Explain the different types **Q6**) a) of polarization. [9]
 - Find the reflected and transmitted electric and magnetic field intensity at b) the interface between $\varepsilon_r = 8.5, \mu_r = 1, \sigma = 0, E_i = 1.5V$ and in free space. [9]
- Write the primary and secondary parameters of transmission line and **Q7**) a) derive the relationship between Z_0 in terms of primary constant. [9]
 - A line has zero dissipation has R = $0.006\Omega/m$, $L = \frac{2.5\mu H}{m}$, b) $=4.45 \mu F / m$,. If the line is operated at 10MHz. Calculate characteristics impedance, propagation constant, Velocity of propagation, and wavelength. [8] OR
- The characteristic impedance of a high frequency line is 100Ω . It is **Q8**) a) terminated in an impedance of $100 + j100 \Omega$. Using smith chart find the impedance at 0.125 wavelength away from the load end. [9]
 - est sciences [8] Derive the relationship between standing wave ratio and reflection b) coefficient.

[5870] - 1062

2