T.E. (Electronics \& Telecommunication) DIGITAL COMMUNICATION (2019 Pattern) (Semester - I) (304181)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answers Q4 or Q2, Q3 or Q4, Q5 or Q6, and Q7 or Q8.
2) Figures to the right side indicate full marks.
3) Assume suitable data, if necessary.

Q1) a) Explain how eye pattern can be used to studyisI.
b) \ltimes Find the maximum value of erre probability Pe for16-PSK, 16-FSK (orthogonal) and 16-QAM if energy per bitduration is $5 \times 10-5 \mathrm{~J}$ and double sided power spectral density (PSD) of AWGN is $10-9 \mathrm{~W} / \mathrm{Hz}$.

Given :
$\operatorname{erfc}(3.1622)=0.00000774819$
$\operatorname{erfc}(1.9634375)=0.00549$
$\operatorname{erfc}(7.0710678)=1.5239709 \times 10^{-23}$
c) Describe with the help of block diagram, MSK transmitter along with waveforms. Mention the bandwidth requirement.

OR

Q2) a) Compare MSK \& QPSK.
b) With the help neat block diagram explain $O H \mathrm{DM}$ transmitter and receiver system.
c) Write short note on : Raised cosine function: a solution to Inter Symbol Interference (ISI) and mention its limitations.

Q3) a) A BPSK-DSSS system using coherent detection is used to transmit data at 250bps \& system has to work ima hostile jamming environment with minimum error performance of one error in 20000 bits. Determine the minimum chipping rate if the jamming signal is 300 times stronger than the received signal.
b) Write a short note on :
i) PN sequence Generator
ii) Frequency hop Spread spectrum

OR

Q4) a) Information bit duration of DS-BPSK SS system is MHz . Assuming an average error probability of 10^{-5}. Calculate jámming margin if $\mathrm{Q}(4,25)=10^{-5}$.
b) Explain DSSS based CDMA.

Q5) a) Given the messages $X_{1}, X_{2}, X_{3}, X_{4}, X_{5} /$ with respective probabilities of $0.4,0.19,0.16,0.15$ and 0.1 Construet codeword by minimum variance Huffman code. Compute source entropy, codeword length, efficiency, redundancy and variance
[10]
b) Calculate the capacity of anAWGN channel whose bandwidth is 1 MHz and S / N ratio of 40 dB .
c) State and explain channel coding theorem.

Q6) a) Compute Shannon Fano code for following message ensemble.

Symbols	X_{1}	X_{2}	X_{3}
Probabilities	0.4	0.3	0.2

Compute average codeword length, Entropy and coding efficiency.
b) State and explain Information Capacity theorem.
c) Compare between source coding and Channel coding.

Q7) a) For a systematic $(7,4)$ LBC parity matrix is given as :

$$
\mathrm{P}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

i) Construct a generator matrix.
ii) Find codevectors for messages $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ 0 and $\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$
$\left.\begin{array}{l}\text { iii) If thereceived code vector is } \mathrm{R}=\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 0\end{array} 1\right.\end{array}\right]$, find the corrected
b) Expain the generation of systematic and non systematic cyclic code.

Q8) a) Define following terms for LBC
i) Code vector
ii) Code rate
iii) Hamming distance
iv) Hamming weight
v) Systematic code
b) What are Turbo codes? Explain its bit error performancefor uncoded transmission.

๑๐๐๐

