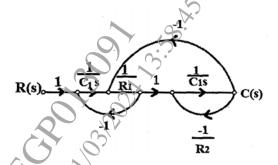
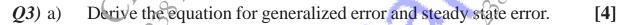
Total No. of Questions : 4]	SEAT No. :
PB18	[Total No. of Pages : 2
[6268]	.0
S.E. (Electronics/E & TC Engineering)	
(Insem) CONTROL SYSTEM	
(2019 Pattern) (Semester - IV) (204192)	
Time: 1 Hour	[Max. Marks : 30
Instructions to the candidates:	O_{i}
1) Answer Q1 or Q2, Q3 or Q4.	
2) Neat diagrams must be drawn wherev	ver necessary.
3) Figures to the right side indicate full	marks.
4) Assume Suitable data, if necessary.	2,3
6.	O V isc
Q1) a) Explain open loop and closed lo	oop systems with real time example. [4]
b) For the given mechanical system	
Draw mechanical Network	9
ii) Write differential equation,	
iii) Draw F-I analogous network	
m) Blaw I Tanalogous netwo	
4 k	X
	$\mathbf{\hat{F}}$
\mathbf{B}	7
Frictionless	, v
6.	
c) Reduce the following block diagra	am and obtain the transfer function C/R [6]
\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H2 G3 C C
	G2 17 G3 1 C
+ + + · · · · · · · · · · · · · · · · ·	
H1 +1	
OI	S S S S S S S S S S S S S S S S S S S
Q2) a) Determine the transfer function	V.
(Q2) a) Determine the transfer function	of $\frac{V_0}{V_{in}}$ [5]


 $\begin{array}{c|c} & & & \\ & & & \\ \hline \\ \text{Vin} & & \\ \hline \end{array}$


b) Write the features of open loop system

[5]

c) Consider the system shown in figure obtain the closed loop transfer function C(s)/R(s) [6]

b) Determine the static error, constant and steady state error for step input if the unity feedback system has open loop transfer function

$$G(s) = \frac{k}{s(s+2)(s+4)+20}$$
, $k = 10$. Also find 'k' if steady state error for step input is 0.8. [6]

c) Draw and sketch the transient response of second order control system and explain all the transient response specification. [5]

QR

Q4) a) Explain the effect of damping factor on the position of closed loop poles.[4]

- b) Find the expression for closed loop transfer function, damping factor and undamped natural frequency of oscillations for the system $c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}$ subjected to unit step input. [6]
- c) For the unity feedback system having open loop transfer function

$$G(s) = \frac{(s+2)}{s(s^3 + 7s^2 + 12s)}$$
 Find type of system error coefficients, and

steady state error.

