Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	3

[5152]-536

S.E. (E&TC/Electronics) (II Sem.) EXAMINATION, 2017 INTEGRATED CIRCUITS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, and Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Define the following characteristics of Op-amp:
 - (i) Input bias and offset current
 - (ii) CMRR
 - (iii) Bandwidth
 - (iv) Slew Rate.
 - (b) Draw an Inverting Summing amplifier with three input. Derive an expression for its output voltage : [6]

$$V_0 = - (V_a + V_b + V_c)$$

P.T.O.

2. (a) An emitter biased Dual input balanced output differential amplifier has the following specifications: [6]

 V_{CC} = - V_{EE} = 10 V, R_{C1} = R_{C2} = 2.7 k Ω and R_{E} = 5.6 k Ω , Transistor array is CA3086 with β_{ac} = β_{dc} = 100 and V_{BE} = 0.715 V. Calculate :

- (i) Voltage Gain (Ad)
- (ii) Input Resistance (Ri)
- (iii) Output Resistance (Ro)
- (b) Draw the circuit diagram of Practical Integrator along with frequency response and explain its operation. [6]
- 3. (a) Explain with a neat circuit diagram woking of inverting Schmitt trigger using Op-Amp. Also give the equation for triggering points.
 - (b) With neat circuit diagram, explain current to voltage converter. [6]

Or

- 4. (a) Draw and explain square wave generator using Op-Amp and give expression for output frequency. [6]
 - (b) An 8-bit DAC converter has a resolution of 10 m V/bit. Find the analog output voltage for the following digital input :[6]
 - (1) 1000 1010
 - (2) 0001 0000

- **5.** (a) With the help of neat block diagram explain operation of PLL. Define the term "lock range" and "Capture range". [7]
 - (b) Design a second order low pass filter with higher cut-off frequency of 2 kHz with pass gain is 1.5. Draw the designed circuit and sketch its frequency response. [6]

 R_2 = R_3 = R and C_2 = C_3 = C Assume C = 0.01 μf and R_1 = 10 $k\Omega.$

Or

- 6. (a) With the help of neat circuit diagram explain the operation of RC phase shift oscillator. [6]
 - (b) Design a wide band pass filter for $f_{\rm L}$ = 100 Hz, $f_{\rm H}$ = 1 kHz and pass band gain equal to 4. Also calculate the value of its quality factor 'Q'. Assume : [7] $C' = 0.01 \, \mu f$ and $C = 0.05 \, \mu f$

 $R_1' = 10 \text{ k}\Omega$ and $R_1 = 10 \text{ k}\Omega$

- 7. (a) Calculate output frequency f_0 , Lock range Δf_L , Capture range Δf_C of a PLL. If $R_T = 10$ k Ω , $C_T = 0.01$ μf , filter capacitor C = 10 μf and Internal resistance = 3.6 k Ω .

 Assume $\pm V = 10V$.
 - (b) Draw and explain wide band pass filter. Draw its frequency response. [7]

[5152]-536

- **8.** (a) Draw neat circuit diagram of Voltage Controlled Oscillator (VCO) and derive expression for output frequency. [7]
 - (b) Design an Active notch filter for rejecting the mains frequency of 50 Hz. Draw detailed design circuit diagram. Assume C = 0.47 µf. [6]

[5152]-536