Total N	lo. o	f Que	estions: 9]	^	SEAT N	0.:	\neg	
DD 4062				23		otal No. of Pages	: 4	
PD-4062			[640	2]-21	<u>.</u>	,		
9	S.E	. (E	٥	3	Comp. Eng.	/Electronics		
S.E. (Electronics /E&TC/Electronics & Comp. Eng./Electronics Engg.(VLSI Design & Tech.)/Electronics & Comm.(A.C.T.))								
ENGINEERING MATHEMATICS - III								
(2019 Pattern) (Semester - III) (207005)								
Time :	2½.			icstei -	111) (2070	[Max. Marks:	70	
Instructions to the candidates:								
1)	Q.1	s compulsory.			\wedge		
2)	Atter	upt Q.2 or Q.3, Q.4 or Q.5,	Q.6 or Q .7,	Q.8 or Q.9.	<i>?</i> `		
3)	Neat	diagrams must be drawn v	vherever n	ecessary.	*		
4	!)	Figu	res to the right indicate ful	l marks.				
5		- \X	of electronic pocket calcula		wed.			
6			me suitable data, if necesso		9.			
7) >	Write	e numerical calculations co	rrect upto	four decimal	places.		
				3	3'			
<i>Q1</i>) V	Vrite	e the	correct option for the following	owing mu	ltiple choice of	luestions.		
i))	Ifφ	$= x^2 - y^2 + 2z^2 \text{ then } \nabla \phi \text{ at}$	the point	(1, 2, 3) is	ı	[2]	
,				(D)			/	
		a)	2i-4j-12k	y b)	2i - 4j + 12k		3	
		c)	2i + 4j + 12k	d)	2i + 4j - 12k		50	
11	i)	If f()	$f(x) = x^2$, $h = 2$ then $\Delta^2 f(x)$ is	given by			[2]	
	4	a)	6	b)	12	1,000		
4		c)	4	d)	8			
ij	ii)	If f	$2i - 4j - 12k$ $2i + 4j + 12k$ $2i + 4j + 12k$ $3i + 4j + 12k$ 4 $(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)^2 (z - 2)} \text{ the } 0$ 1	en residue	of f(z) at z=	2 is [[2]	
~		a)	0	b)	-1			
1		c)	1	d)	W			

P.T.O.

iv)	The work done in moving a particle in a force field $\overline{E} = (2x + y)\overline{i} + (2x + y)\overline{i}$ along the auty $x = 2t$, $y = 2t$ from $t = 0$ to
	$\overline{F} = (2x+y)\overline{i} + (3y-x)\overline{j}$ along the curve $x = 3t$, $y = 2t$ from $t = 0$ to $t = 1$, is
	a) 15 b) 12
	c) 14 d) 0
v)	Shifting operator E is equivalent to [1]
	a) $1-\delta$ b) $1+\Delta$
	c) $1 \pm \delta^2$ d) $2 - \delta$
vi)	If f(z) is analytic on and within a closed contour C and if 'a' is any point
	If $f(z)$ is analytic on and within a closed contour C and if 'a' is any point within C then by Cauchy's integral formula $\oint \frac{f(z)}{z-a} dz$ is [1]
	a) 0 b) $2\pi i f(a)$
	·P
	$\frac{2\pi i}{n!}f^n(a) \qquad \qquad d) \pi i$
\	
a)	State Lagrange's interpolation formula. Use this formula to find y when
a)	x = 5 from the following data. [5]
	x 2 3 4 7
	y 4 8 16 128 5
b)	A curve is drawn to pass through the points given by the following table.
Γ	[5]
	x 1 1.5 2 2.5 3 3.5 4 y 2 2.4 2.7 2.8 3 2.6 2.1
	y 2 2.4 2.7 2.8 3 2.6 2.1 Estimate the area bounded by the curve, the X-axis and the ordinates
	$x = 1$, $x = 4$ by Simpson's $\frac{1}{3}$ rule.
c)	Use Euler's method to solve [5]
	$\frac{dy}{dx} = 1 + xy, \ y(0) = 1$
	and tabulate y for $x = 0$ to $x = 0.3$. Take $h = 0.1$
	9.7
2]-2 1	2

[6402]-21

Q2)

- Q3) a) Given $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$, Find $\sin 58^\circ$ using Newton's backward difference formula. [5]
 - b) Given $\frac{dy}{dx} = x^2 y$, y(0) = 1, find y(0.1) using Runge-Kutta method of fourth order (Take h = 0.1) [5]
 - c) Use Trapezoidal rule to evaluate $I = \int_{-3}^{3} x^4 dx$ using six equal subintervals. [5]
- Q4) a) Find the directional derivative of $\phi = xy + yz + zx$ at (1, 1, 1) along the vector $\overline{i} + 2\overline{j} + 2\overline{k}$ [5]
 - b) Show that the vector field $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 z)\vec{j} + (3xz^2 v)\vec{k}$ is irrotational. Find scalar potential function ϕ such that $\vec{F} = \nabla \phi$ [5]
 - Find angle between tangents to the curve x = t, $y = t^2$, $z = t^3$ at t = 1 and t = -1.

Q5) a) Find the directional derivative of $\phi = xyz$ at (1, 2, -1) in the direction normal to the surface $x \log z - y^2 = -4$ at (-1, 2, 1)

- b) Prove that $\nabla^2 \left[\nabla \cdot \frac{\overline{r}}{r^2} \right] = \frac{2}{r^4}$ [5]
- c) The position vector of a particle at time t is $\overline{r} = \cos(t-1)\overline{i} \sin h(t-1)\overline{j} + mt^3\overline{k}$. Find the condition on m. So that at any time t = 1 the acceleration is normal to the position vector. [5]
- **Q6**) a) Apply Green's Theorem to evaluate $\int_C (3ydx + 2xdy)$ where C is boundary of $0 \le x \le \pi$, $0 \le y \le \sin x$ [5]
 - b) Using Gauss-divergence theorem, prove that

$$\iint_{S} (\phi \nabla \Psi - \Psi \nabla \phi) \cdot d\overline{s} = \iiint_{V} (\phi \nabla^{2} \Psi - \Psi \nabla^{2} \phi) dV$$
 [5]

[6402]-21

- Using Stoke's theorem, evaluate: $\int_{C} [3(x-y)dx + 2xzdy + xydz]$
 - Where C is the curve of intersection of paraboloid $x^2 + y^2 = 2z$ and the plane z = 2

[5]

OR

- Q7) a) Evaluate $\int_C \overline{F} \cdot d\overline{r}$, $\overline{F} = (2x + y^2)\overline{i} + (3y 4x)\overline{j}$ where C is the parabolic are $y = x^2$ joining (0, 0) & (1, 1) [5]
 - b) Using Gauss-Divergence Theorem, evaluate $\iint_S \overline{F} \cdot \hat{n} ds$ for $\overline{F} = 4xz\overline{t} y^2\overline{j} + yz\overline{k}$ where S is the surface of the cube bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, z = 2 [5]
 - c) Evaluate $\iint_{S} (\nabla \times \overline{F}) \cdot d\overline{s}$ for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ where S is the surface of the paraboloid $z = 1 x^2 y^2$, $z \ge 0$ [5]
- Q8) a) If $u = x^4 6x^2y^2 + y^4$, find V such that f(z) = u + iv is analytic function. Express f(z) in terms of z. [5]
 - b) Use Cauchy's integral formula to evaluate $\oint_C \frac{e^z}{z+2} dz$ where C is the circle |z+2|=2 [5]
 - Find the bilinear transformation which maps the points 0, -1, i of the z-plane onto the points $2, \infty, \frac{1}{2}(5+i)$ of the W-plane.
- (Q9) a) Show that analytic function f(z) with constant amplitude is constant. [5]
 - b) Apply residue theorem to evaluate $\oint_C \frac{4z^2 + z}{z^2 1} dz$ where C is the contour

$$|z-|=\frac{1}{2}$$
 [5]

Show that the transformation $W = z + \frac{1}{z} 2i$ maps the circle |z| = 2 into an ellipse. Find centre, semi-major and semi-minor axes of ellipse. [5]

ಹಿಹಿಹಿ