
Q1) Write the correct option for the following multiple choice questions.

i) If  = x2 – y2 + 2z2 then  at the point (1, 2, 3) is _____ [2]

a) 2i – 4j – 12k b) 2i – 4j + 12k

c) 2i + 4j + 12k d) 2i + 4j – 12k

ii) If f(x) = x2, h = 2 then 2f(x) is given by [2]

a) 6 b) 12

c) 4 d) 8

iii) If
2 2

2
sin cos( )

( 1) ( 2)
z zf z

z z
p p+

=
- -

 then residue of f(z) at z = 2 is ____ [2]

a) 0 b) – 1

c) 1 d) 
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iv) The work done in moving a particle in a force field
F (2 ) (3 )x y i y x j= + + -  along the curve x = 3t, y = 2t from t = 0 to
t = 1, is __________ [2]
a) 15 b) 12

c) 14 d) 0

v) Shifting operator E is equivalent to _________. [1]
a) 1 –  b) 1 + 

c) 1 +  d) 2 – 

vi) If f(z) is analytic on and within a closed contour C and if 'a' is any point

within C then by Cauchy's integral formula 
( )f z dz

z a-ò  is [1]

a) 0 b) 2if (a)

c)
2 ( )

!
ni f a

n
p

d) i

Q2) a) State Lagrange's interpolation formula. Use this formula to find y when
x = 5 from the following data. [5]
x 2 3 4 7

y 4 8 16 128

b) A curve is drawn to pass through the points given by the following table.
[5]

x 1 1.5 2 2.5 3 3.5 4

y 2 2.4 2.7 2.8 3 2.6 2.1

Estimate the area bounded by the curve, the X-axis and the ordinates

x = 1, x = 4 by Simpson's 
1
3

rd rule.

c) Use Euler's method to solve [5]

1 , (0) 1dy xy y
dx

= + =

and tabulate y for x = 0 to x = 0.3. Take h = 0.1
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OR
Q3) a) Given sin 45° = 0.7071, sin 50° = 0.7660, sin 55° = 0.8192,

sin 60° = 0.8660, Find sin 58° using Newton's backward difference
formula. [5]

b) Given 2 , (0) 1dy x y y
dx

= - = , find y(0.1) using Runge-Kutta method of

fourth order (Take h = 0.1) [5]

c) Use Trapezoidal rule to evaluate 
3 4
3

I x dx
-

=ò  using six equal subintervals.

[5]

Q4) a) Find the directional derivative of  = xy + yz + zx at (1, 1, 1) along the
vector 2 2i j k+ + [5]

b) Show that the vector field
3 2 2(6 ) (3 ) (3 )F xy z i x z j xz y k= + + - + -  is irrotational. Find scalar

potential function  such that F f= [5]

c) Find angle between tangents to the curve x =  t, y = t2, z = t3 at t = 1 and
t = –1. [5]

OR
Q5) a) Find the directional derivative of  = xyz at (1, 2, –1) in the direction

normal to the surface xlog z –y2 = –4 at (–1, 2, 1) [5]

b) Prove that 2
2 4

2r
r r

é ù
ê ú ⋅ =
ê úë û

[5]

c) The position vector of a particle at time t is
3cos( 1) sin ( 1)r t i h t j mt k= - - + . Find the condition on m. So that at

any time t = 1 the acceleration is normal to the position vector. [5]

Q6) a) Apply Green's Theorem to evaluate (3 2 )
C

ydx xdy+ò

where C is boundary of 0 < x < , 0 < y < sinx [5]
b) Using Gauss-divergence theorem, prove that

( )2 2( ψ ψ ) ψ ψ
S V

d s dVf f f f -  ⋅ =  - òò òòò [5]

CEG
P0

13
09

1

49
.2

48
.2

16
.2

37
 1

3/
05

/2
02

5 
09

:2
9:

32
 st

at
ic

-2
37CEG

P0
13

09
1

49
.2

48
.2

16
.2

37
 1

3/
05

/2
02

5 
09

:2
9:

32
 st

at
ic

-2
37

CEG
P0

13
09

1

49
.2

48
.2

16
.2

37
 1

3/
05

/2
02

5 
09

:2
9:

32
 st

at
ic

-2
37



[6402]-21 4

c) Using Stoke's theorem, evaluate : [5]

[ ]3( ) 2
C

x y dx xzdy xydz- + +ò

Where C is the curve of intersection of paraboloid x2 + y2 = 2z and the
plane z = 2

OR

Q7) a) Evaluate ( ) ( )2, 2 3 4
C

F d r F x y i y x j⋅ = + + -ò where C is the

parabolic are y = x2 joining (0, 0) & (1, 1) [5]

b) Using Gauss-Divergence Theorem, evaluate ˆ
S

F nds⋅òò  for

24F xz i y j yz k= - + where S is the surface of the cube bounded by
the planes x = 0, x = 2, y = 0, y = 2, z = 0, z = 2 [5]

c) Evaluate ( )
S

F d s´ ⋅òò  for F yi zj xk= + +  where S is the surface

of the paraboloid z = 1 – x2 – y2, z > 0 [5]

Q8) a) If u = x4 – 6x2y2 + y4, find V such that f(z) = u + iv is analytic function.
Express f(z) in terms of z. [5]

b) Use Cauchy's integral formula to evaluate 2

z

C

e dz
z+ò  where C is the

circle |z + 2| = 2 [5]
c) Find the bilinear transformation which maps the points 0, –1, i of the

z-plane onto the points 2, , 
1
2

(5 + i) of the W-plane. [5]

OR
Q9) a) Show that analytic function f(z) with constant amplitude is constant. [5]

b) Apply residue theorem to evaluate 
2

2
4

1C

z z dz
z

+
-ò  where C is the contour

1
2

z- = [5]

c) Show that the transformation 
1 2W z i
z

= + -  maps the circle |z| = 2 into

an ellipse. Find centre, semi-major and semi-minor axes of ellipse. [5]


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