1) Answer Q. 1 Or Q.2, Q.3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figure to the right indicate full marks.
3) Neat diagrains must be drawn wherever necessary.
4) Assume suitable additional data, if necessory.
5) Use of non-ppegrammable calculator is allowed.

Q1) a) Drawblock diagram of regulated power supply and explain the function of each block?
b) With the help of neat diagram explain buck-boost converter?
c) Draw and explain low dropout regulator?

Q2) a) Design a regulated power supply tising DM 317 for output voltage $g v$ and 15v IAdj=100 uA.
b) Explain the working of SMPS withneat diagram?
c) Compare regulated and unregulated power supply?

Q3) a) List all parameter's of op-amp. Explain any four in brief?
b) Explain significance of negative feed back, in op-amp amplifier?
c) A dualt input balanced output differential amplifier has following specification $\mathrm{Rc}=2.7 \mathrm{~K} \Omega, \mathrm{RE}=4.5 \mathrm{k} \Omega, \pm \mathrm{VCC}= \pm 10 \mathrm{v}, \beta=100 ; \mathrm{VBE}=0.7 \mathrm{~V}$; re $=26.34 \Omega$ calculate
i) Voltage gain.(Ad)
ii) Rin
iii) Ro

Q4) ar Draw block diagram of op-amp and explai ach block?
b) Compare inverting and non-inverting configuration of op-amp with following parameters:
i) Feedbock Type
ii) Ri
iii) Gain
iv) Bandwith
c) Determine the Q point for dual inplot and balanced output differential amplifier with $\mathrm{RC}=\mathrm{RE}=65 \mathrm{~K} \Omega$ and supply voltage $\pm 15 \mathrm{~V}$ assume suitable data.

Q5) a) Draw an inverting summing amplifier with three input and derive expression for the output voltage $\mathrm{Vo}_{0}=(\mathrm{Va}+\mathrm{Vb}+\mathrm{Vc})$
b) Design a practicat Integrator with input Signal of 1.5 vpp and cut off frequency of 3 KHz forDC voltage gain of 10 .
c) Draw circuit diagramof 30p-amp Intrumentation amplifier and write its o/p equation?

OR

Q6) a) With the help of neat diagram explain working of symmetrical schmitt trigger?
b) Designacasquare wave generater using op-amp for frequency 1 KHz to 10 KHzwith 50% duty cycle. draw diagram with component value.
c) Explaín practical differentiator circuit with neatdiagram? list limitations ofideal differentiator?

Q7) a) Explain voltage to current converree with \ddagger loating load?
b) Determine the output voltage produced by 4 bit R-2R ladder DAC with

Vret $=5 \mathrm{v}$ for bit sequence i) $P \mathrm{O} 0$ ii) H 01
c) Explain working of flash ADC in details.

Q8) a) Define terms.
i) Lock range
ii) Capture range.
iii) Pullin time
iv) Free running frequency.
b) With the neat diagram explain working of weighted resistor DAC?
c) Find the digital output of an ADC having $\mathrm{t}=83.33 \mathrm{Msec}$ and $\mathrm{VR}=100$ mv for an input voltage. of +100 mV . The clock frequency is kHz

