S.E. (Electronics/E\& TC Engineering)
 EL_ECTRICTAL CIRCUITS (2019 Pattern) (Semester-III) (204183)

Time : $\mathbf{2}^{1 ⁄ 2}$ Hours]

Instructions to the candidates?

1) Answer 0.1 or Q. $2, Q .3$ or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figures to the right indicate full marks.
3) Assume Suitable data if necessary.

Q1) a) What is a two port network? Mention the application of two port network parameters
b) Determine the z parameters for thecircuit shown in Fig. 1.

c) Find the condition for $s y m m e t r y$ and reciprocity of Z parameter.

Q2) a) Explain the pole-zeros of network function. Also state its significance.[6]
b) Find h-parameters for the network shown in Fig.2

Fig. 2
c) Determine $Z(s)$ in the network shown in Fig.3. Find poles and zeros of $\mathrm{Z}(\mathrm{s})$ and plot them on s-plane.

Q3) a) What are the types of DC motor? A series motor shoufd not be started on no load. Why?
b) Draw a neat sketch of a DC generator. State the functions of each part.[6]
c) A 200 V lap wound DC shunt motor has 800 cenductors on its armature. The resistance of the armature winding is 05Ω and that of field winding $\star_{\text {is }} 200 \Omega$. The motor takes a current) of $2 \sqrt{ }$, the flux per pole is 30 m Wb . Find the speed and torquedeveloped in the motor.

Q4) a) Explain significance of back e.m.f. in a DC motor.
b) A 4 pole DC shunt generator with lap connected armature has field and armature resistances as 50Ω and 0.1Ω respectively. If the generator has to supply 60 lamps, with rating $100 \mathrm{~V} / 40 \mathrm{~W}$ each. Calculate
i) Total armature curpent
ii) Current in each armature conductor
iii) Generated EMF

Take 1 V per brush as contact drop.
c) Why starter is required in a DC motor? Onder what condition the mechanical power developed in a dc motor will bemaximum?

Q5) a) Explain the effect of loading on induction motor.
b) What are different methods of speed control for three phase induction motor. Explain any one.
c) The power input to a $500 \mathrm{~V}, 50 \mathrm{~Hz}, 6$ pole, 3 phase induction motor running at 975 rpm is 40 kW . The stator losses are 1 kW and the friction and windage losses total 2 kW . Caiculate:
i) slip
ii) rotor copper loss
iii) shaft power
iv) efficiency

OR
Q6) a) State any 4 useof single phase induction motor? Differentiate between "capacitor start" \& "Capacitor start capacitor run" Single phase induction motor?
b) What are types of 3-phase induction motor? Explain any one in detail.[6]
c) The power input to the rotor of a $440 \mathrm{~V}, 50 \mathrm{hz}, 6 \mathrm{pole}, 3$ phase induction motor is 100 kW . The rotor electromotive force is observed to make 120 cy cles per minute. Calculate: Rotor speed
i) Mechanical power developed
ii) Rotor copper loss per phase

Q7) a) Give types and applications of stepper motor.
b) What is Brushless DC moton? Explain working and construction of any one type of BLDC motor?
c) What is the need of electric vehicle? Also give the advantages rand disadvantage of electric vehicle.

Q8) a) Compare Brushless DC motor with conventinal DC motor
b) Explain the construction and operation of permanent magnet stepper motor.

Draw the block diagram and explain components ofelectric vehicle. [6]

