S.E. (Electronics/Electronics \& Telecommunication) ELECTRICAL CIRCUITS (2019 Pattern) (Semester - I) (204183)

Time : 1 Hour]

[Max. Marks: 30
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Using KVL, find the value of R in the Fig.a

Fig.a
b) Using node analysis, find the node voltages V_{1} and V_{2} in the network of Fig.b

Fig.b
c) State and explain Maximum Power Transfep theorem with suitable example.

Q2) a) Using super mesh analysis, Find theegurrent through 3Ω resistor in the network of Fig.c

b) Using Thevenin's theorem, Find the current throughthe 2Ω resistor conmected between terminals A and B in the Fig.d

Fig.
c) When to use superposition theorem? List out its applications and limitations.

Q3) a) In the given network FFig.e, the switch is closed at $t=0$. With zerócurrent in the inductor, find the values of $i, d i / d t$, and $d^{2} i / d t^{2}$ at $t=0^{+}$.

Fig.e
b) In Fig.f, the switch is closed at $t=0$ Find $\mathrm{V}_{c}(t)$ for $t>0$.

c) What is the significance of initial conditions? Explain initial condition for resistor, eapacitor and inductor.

OR

Q4) a) Write short note on underdamped, overdamped and critical damped systems.
b) Whe network of Fig.g is under steady state with switch at the position 1.

At $t=0$, switch is moved to position 2. Find $i(t)$

Fig.g
c) For the network shown in Fig.h, the switch is open for a long time and closes at $\mathrm{t}=0$. Determine $\mathrm{V}_{\mathrm{c}}(t)$.

Fig.h

