Seat No.		[5252]-531
S.E. (E	&TC/Electronics) (First Semes	ster) EXAMINATION, 2017
	SIGNALS AND SY	STEMS
	(2015 PATTER	RN)
	Three Hours	Maximum Marks : 50
	(i) Neat diagrams must be dr	
	(<i>ii</i>) Figures to the right indication	
(<i>iii</i>) Use of logarithmic tables	
		and steam tables is allowed.
	(iv) Assume suitable data, if n	ecessary.
-		
1. (<i>a</i>)	Sketch the following signals :	[6]
	(i) $u[n + 2] - u[n - 3]$	
	(<i>ii</i>) $r(t) u(2 - t)$	1 I(t) [0]
<i>(a)</i>	Find the convolution of $x(t)$ a	and $h(t)$: [6]
	x(t) = u(t + 1) h(t) = u(t - 2).	
		× .8.
9 (a)	Or Check whether the following or	ratem is statis/demonia linear/
2. (<i>a</i>)	Check whether the following sy	
	non-linear, causal/non-causal, ti y(t) = 10x(t) +	
	y(t) = 10x(t) + Check whether the following sig	
	If periodic, find the fundamen	
	$x(t) = 2 \cos (10t + 1) -$	
	$x(t) = 2 \cos(10t + 1) =$	$\sin(4t - 1)$
		P.T.O.

- convolution Determine (c)the sum of two sequences graphically : [6] $h[n] = \{1, 2, 2\}$ $x[n] = \{1, 2,$ Find the trigonometric Fourier series for the periodic (a)signal x(t). [6] (x(t) t 0 7 -5 -3 -1
 - (b) Obtain the Fourier transform of a rectangular pulse : x(t) = A rect (t/T).[6]
- 4. (a) Obtain the exponential Fourier series of the unit impulse train

Or

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$$

Sketch the Fourier spectrum.[6]Find the Fourier transform of the following signals :[6]

(*i*)
$$x(t) = \delta(t)$$

$$(ii) \quad x(t) = e^{-at} \quad u(t).$$

[5252]-531

(b)

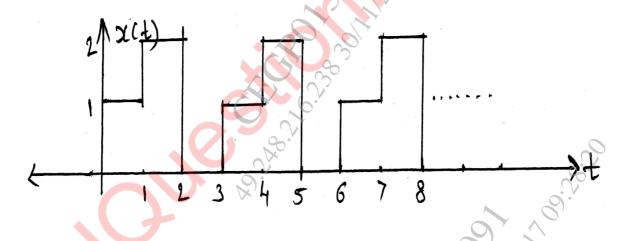
3.

 $\mathbf{2}$

5. Find the Laplace transform of : (a)

> $x(t) = e^{-5t} [u(t)] u(t - 5)]$ and its ROC [7]

Find the initial and final values for the following (*b*) function : [6]


$$x(s) = \frac{s+5}{s^2+3s+2}$$
Or

Determine the inverse Laplace Transform of : **6**. (a)[7]

$$x(s) = \frac{2}{s(s+1)(s+2)}$$

(*b*)

Find Laplace transform of given periodic signal : [6]

- In a random experiment, a trial consists of four successive 7. (a)tosses of a coin. If we define a random variable x as the number of heads appearing in a trial, determine PDF and CDF. [7]
 - State and prove any three properties of PDF. (a)[6]

[5252]-531

8. (a) A certain random variable has the CDF given by : [7]

$$F_{x}(x) = 0$$
 for $x \le 0$
 $= kx^{2}$ for $0 < x \le 10$
 $= 100k$ for $x > 10$.
Find the values of :
(i) h
(ii) $P(x \le 5)$
(iii) $P(5 < x \le 7)$
(iv) Plot the corresponding PDF.
(b) State and explain the properties of auto-correlation function
for energy singal. [6]

[5252]-531

4