Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	9

[5152]-532

S.E. (Electronics/E&TC) (I Semester) EXAMINATION, 2017 ELECTRONIC DEVICES AND CIRCUITS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.

- (ii) Neat diagram must be drawn wherever necessary.
- (iii) Use of logarithmic tables, slide rule, Mollier chart, electronic pocket calculator and steam tables is allowed.
- (iv) Assume suitable data wherever required.
- 1. (A) Draw drain and transfer characteristics of N-channel JFET and state various JFET parameters. [6]
 - (B) For the circuit diagram shown in Fig. (1), the transistor :[6]

Fig. 1

Parameters are : $I_{DSS} = 5$ mA, $V_{GS (off)} = -4$ V.

Calculate the values of $R_{\scriptscriptstyle D}$ & $R_{\scriptscriptstyle S}$ for $~I_{\scriptscriptstyle D}$ = 2 mA and $V_{\scriptscriptstyle DS}$ = 6 V.

[5152]-532

P.T.O.

- 2. (A) Draw and explain the frequency response of JFET CS

 Amplifier. [6]
 - (B) For the circuit shown in Fig. (2), Calculate A_v , R_i , R_o [6]

Fig. 2

- 3. (A) For NMOS E mode device $V_{TN} = 0.8V$, $K_n = 0.1$ mA/V². The device is biased at $V_{GS} = 2.5$ V. Calculate I_D when $V_{DS} = 2V$ & $V_{DS} = 10V$. for (a) $\lambda = 0$, (b) $\lambda = 0.02V^{-1}$ Calculate r_0 for (a) & (b)
 - (B) Draw and explain the CMOS Inverter with Active load. [6] Or
- 4. (A) Write short note on MOSFET Scaling. [6]
 - (B) Explain the working of a MOSFET as diode. [6]
- **5.** (A) State the advantages and disadvantages of –ve feedback amplifier. [4]
 - (B) Compare various feedback topologies on the basis of $R_i \& R_o$. [4]

(C) Draw the circuit diagram of Hartley oscillator and calculate f_0 for Hartley oscillator with $L_1 = L_2 = 100 \mu H$ and $C = 0.05 \mu F$.

Or

- 6. (A) In single stage voltage amplifier $A_v = -20$, $R_i = 1M\Omega$, $R_o = 8k$, 20% O/P voltage is feedback in series with i/p. Determine Λ_{vf} , R_{if} , R_{of} of -ve feedback amplifier. [6]
 - (B) Write a short note on Colpitts oscillator using FET. [7]
- 7. (A) Draw and explain the block diagram of LM 317 and also state specification of LM 317. [8]
 - (B) Define line and load regulation in case of voltage regulator.

 What are the ideal values of the same?

 [5]

Or

8. (A) For the circuit diagram as shown in the Fig. (3) calculate range of O/P voltage. (Assume Iadj = 50 µA) [4]

Fig. 3

- (B) Draw and explain the step down switching regulator. [5]
- (C) Write short note on current boosting regulator. [4]