Total No. of Questions : 4]		SEAT No.:
PE-211		[Total No. of Pages : 2
	[6580]-571	

B.E. (Electrical Engineering) (Insem) ADVANCED CONTROL SYSTEM (2019 Pattern) (Semester - VII) (403142)

Time: 1 Hour] [Max. Marks: 30]
Instructions to the condidates:

- 1) Solve 01 or 02, 03 or 04.
 - 2) Figures to the right indicate full marks.
 - 3) Neat diagrams must be drawn wherever necessary.
 - 4) Assume suitable additional data, if necessary.
 - 5) Use of non-programmable calculator is allowed.
- Q1) a) Draw the circuit diagram of lag compensator and derive its transfer function. [7]
 - b) For a unity feedback system open loop transfer function is [8]

$$G(s) = \frac{k}{s(s+2)(s+30)}$$

Design a suitable lead compensator to satisfy the following specifications.

- i) Steady state error for unit ramp input ≤ 25
- ii) Phase margin = 25°
- iii) Gain Margin≥8dB

OR

- Q2) a) Draw the lead network. What are the benefits of adding a lead compensator to a system? [7]
 - b) Design phase lag compensator for the system given by

$$G(s) = \frac{9600}{s(s+4)(s+80)}$$
 so that phase margin is 33°. [8]

- (7) a) Explain the following terms with respect to nonlinear systems.
 - i) Limit cycle
 - ii) Jump Resonance
 - b) Derive the mathematical expression for the describing function of an ideal relay. [8]

P.T.O.

- Q4) a) Explain any 3 non linearities with respect to their input output characteristics. [7]
 - b) In unity feedback system an ideal relay with output equal ta ± 10 unit is connected in cascade with [8]

$$G(s) = \frac{1}{s(s+1)(s+2)}$$

Determine amplitude and frequency of limit cycle if it exists by describing function method