B.E. (Electrical Engineering) (Insem) ADVANCED CONTROL SYSTEM (2019 Patuern).(Semester - VII) (403142)

Time : 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

1) Solve Q. 1 or Q.2 Q. 3 or Q.4.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitable additional data, if necessary.
5) Use of non-programmable calculator is allowed.

Q1) a) Draw the circuit diagram and hence derive the transfer function for a phase lag network, and state its in mortance.
b) The open loop Transfer function of axyity feedback control system is given by $\mathrm{G}(\mathrm{s})=\mathrm{K} / \mathrm{S}(1+0.2 \mathrm{~S})$. Désign a suitable lead compensator such that the given system has static velocity error constant 10 and Phase margine 50°

Q2) a) Draw the circuit diagram.and hence derive the transfer function for phase lead network and also state its importance.
b) Design a lag compensator network for $\mathrm{G}(\mathrm{s})=\mathrm{K} / \mathrm{S}(\mathrm{S}+2)$, withvelocity error constant $>\rightarrow-10$ and Phase margin greater than 60°.

Q3) a) Explain the following with respect to non-linear systeme
Support the answers with figures.
i) Limit Cycle
ii) Sub harmonic oscillations.
b) In a unity feedback control system anideal relay is connected in series with linear element having transfer function $G(s)=6 / S(S+2)(S+3)$. The output of the relay is ± 2 unitis. Check for the existence of limit cycle and if it exists determine the anmplitude and frequency.

Q4) a) Derive the mathenaticap expression for the describing function of an ideal relay. Support the answer with a figure.
b) Explain any foum common non linearities with their characteristics.

