P-6574

[6181] 125

SEAT No. :

[Total No. of Pages : 3

[*Max. Marks* : 70

[6]

B.E. (Electrical Engineering) POWER SYSTEM OPERATION AND CONTROL (2019 Pattern) (Semester - VII) (403141)

Time : 2¹/₂ Hours] Instructions to the candidates:

- 1) Solve Q.1 or Q.2; Q.3 or Q.4; Q.5 or Q.6; Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- 5) Use of a non-programmable calculator is allowed.

Q1) a) Comment on : The necessity of automatic generation control. [4]

- b) Explain following concepts
 - i) Control area concept
 - ii) Area control error
- c) Explain the working of the speed governor system of the turbo generator with a schematic diagram. [8]

OR

- Q2) a) Draw the complete transfer function block diagram representing single are load frequency control including the speed governing model, turbine model and generator load model.
 - b) Draw and explain the complete block diagram of proportional and integral load frequency control of an isolated power system. [6]
 - c) Explain the steady state analysis of single area load frequency control along with its block diagram and two cases; [8]
 - Case i) When the speed changer has a fixed setting and load demand is varying
 - Case ii) When load demand is fixed and the speed changer setting is varying

- Q3) a) Explain the heat rate curve and cost curve of a thermal generating unit.[4]
 - b) Discuss the economic scheduling of thermal plants (method of Lagrange's multiplier) neglecting the effect of transmission losses. [6]
 - c) Three power plants of total capacity 425MW are scheduled for operation to supply a total load of 300 MW. Find the optimum load scheduling if the pants have the following incremental cost characteristics and generator constraints. [7]

$$\frac{dF_{1}}{dP_{g1}} \Rightarrow 30 + 0.15 P_{g1}; 25 \le P_{g1} \le 125$$

$$\frac{dF_{2}}{dP_{g2}} = 40 + 0.20 P_{g2}; 30 \le P_{g2} \le 100$$

$$\frac{dF_{3}}{dP_{g3}} = 15 + 0.18 P_{g3}; 50 \le P_{g3} \le 200$$

OR 🦳

- Q4) a) Discuss hydro constraints and thermal constraints used for Unit Commitment. [4]
 - b) Discuss the economic scheduling of thermal plants considering the effect of transmission losses. [6]
 - c) Determine the Priority list method using full-load average production cost for the data given below: [7]

Unit	Loading Limits		Heat rate curve			Fuel Cost
No.			Parameters			(K _i)
	Mm	Max	a	b	c	(Rs/kCal)
	(MW)	(MW)			C	
1	100	400	0.006	7	600	1.1
2	50	300	0.01	8	400	1.2
3	150	500	0.008	6	500	1.0

- Q5) a) What is power system interconnection? State its advantages. [4]
 - b) Explain the operation of power pools. [6]
 - c) Explain the following type of power interchange: Diversity Interchange.[8]

OR

[6181]-125

- [4] **Q6**) a) Explain in detail: Capacity Interchange,
 - Write a short note on Interchange evaluation with unit commitment. [6] b)
 - Comment on : [8] c)
 - i) Inadvertent Power Exchange
 - ii) **Energy Banking**
- curve with appropriate labeling showing stable and unstable **Q7**) a) Draw the OV regions. [4]
 - What happens when there is voltage instability in the power system? b) Explain in detail. [6]
 - Why voltage stability study has to gain importance in the power system c) study? Explain. [7]

OR

- Draw the PV curve with appropriate labeling showing a stable-unstable **Q8**) a) region. [4]
 - What observations were obtained from the PV curve? Enlist the b) disadvantages of the PV curve. [6]
 - Give the detailed classification of the voltage stability based on the time c) frame and based on nature of the disturbance. March [7]