

Time: 2½ Hours]

Instructions to the candidates:

1) Solve Q1 or Q2 Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Use of algorithmic tables slide rule, and electronic pocket calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) Derive the formula to get transfer function from the state model.
b) Determine state transition matrix for the system give below by using Lapalce transformation technique $\left[\begin{array}{l}x_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
c) Write a set of state equations for the circuit given below.

Q2) a) Obtain the state model of the following differential equation (phase variable representation) $4 y+3 \ddot{z}+y+2 y=5 u$
b) What is state transition matrix? List the properties of sate transition matrix.
c) Define state, state variable, state vector, state equation and output equation. Draw state diagram.

Q3) a) Check the observability of the state model given below usingKalman's Test

$$
\begin{aligned}
& \mathrm{X}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-9 & -11 & -6
\end{array}\right] x+\left[\begin{array}{cc}
0 \\
0 \\
0
\end{array}\right] \\
& \mathrm{Y}=\left[\begin{array}{lll}
-10 & -10 & 5
\end{array}\right] x^{x}
\end{aligned}
$$

b) Explain the effect of pole zero cancellation.
c) Explain full order observer with proper block diagram

Q4) a) What/is controllability? How to investigate controllability of a system using Gilbert's test for
$\star_{\text {i) }} \quad$ Distinct eigenvalues and
ii) Repeated eigenvalues
b) Determine state feedback gain matrix for the system given below to place the closed loop poles ats $\mathrm{s}_{1}=-1.8+\mathrm{j} 2.4$ and $\mathrm{s}_{2}=-1.8-\mathrm{j} 2.4$ by matrix transformation rechnique.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
20.6 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0
\end{array}\right]^{u}
$$

c) Explain the principle of duality.

Q5) a) State and explain Shannon's Sampling theorem. How to select the sampling period?
b) Explain mapping between s-plane and z-plape.
c) Determine the stability of sampled data Control system using Jury's stability analysis having following polynomial $z^{3}+2.1 z^{2}+1.44 z+$ $0.32=0$.

Q6) a) Explain the concept of Zero OrderHold and First Order Hold operations. Derive the transfer function of ZOH .
b) Draw block diagram of the digital control system. State function of each block.
c) Determine the stability by using Bilinear transformation for sampled data control system/having polynomial

$$
z^{3}-4 z^{2}+5 z-2=0
$$

Q7) a) Define adaptive control. Explain the need of adaptiye control. What is adaption mechanism?
b) Ifthe system is given by $\dot{x}=\mathrm{A} x+\mathrm{B} u$ and stiding surface is given by $\mathrm{O}^{\circ}=\mathrm{S} x$, prove that the closed loop systemobtained by applying the equivalent control is $\dot{x}=\left(\mathrm{I}_{n}-\left(\mathrm{B}(\mathrm{SB})^{-1} \mathrm{~S}\right)^{\mathrm{A}} \mathrm{A} x\right.$.
c) State and explain the linear quadratic regulator problem.

QR

Q8) a) Draw block diagram of Model Reference Adaptive Control scheme and explain it.
b) What is reaching law? Why is it required? Write expressions of constant rate reaching law. constant plus proportional rate reachingolaw and power rate reaching law.
c) What is optimal control? Write down the steps in dinear quadratic regulator problem.

