[5870] 054
 T.E. (Electrical)
 POWERSYSTEM - II
 (2019 Pattern) (Semester - II) (303148)

Time : 3 Hours]
[Max. Marks : 70

Instructions to the candidates:

1) AnswenQ. 1 on Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) Taxke base $\mathrm{MVA}=20 \mathrm{MVA}$ and base $\mathrm{kV}=6 \mathrm{kV}$ on motor load in figure 1 gand draw per-unit impedance diagram to thése base values.

b) Justify the following statements.
i) Y-bus is perferred instead of Z-bus in power system analysis.
ii) Per unit system is preferred over actual system parameters.,
iii) The decoupled load flow method is faster than the Newton-Raphson load flow method.
OR

Q2) a) Determine the unknown elements from the foflowing Bus matrix.

$$
Y_{B U S}=\left[\begin{array}{cccc}
? & ? & ? & ? \\
-j 2 & ? & -j 5 & ? \\
-j 4 & ? & ? & -j 4 \\
0 & -j 7 & ? & ?
\end{array}\right]
$$

b) Prove that per unit impedance of transformer on both sides are same.[7]

Q3) a) What are the different types of cuæent limiting reactor? With circuit diagram, elaborate operation of each type.
b) Two 11 kV , three phase 3 MVA generators having sub-transient reactance of 15% operates in parallel. The generator is connected to a transmission line through a transformer of 6 MVA $11 / 22 \mathrm{kV}$ with leakage reactance of 5%. Choose the base MNA $=6 \mathrm{MVA}$ and base $\mathrm{kV}=11 \mathrm{kV}$ on the generator, convert circuit into peo unit diagram. Determine fault MVA and fault current in $k A$, f the three-phase fault is on
i) HTside
ii) 141 side of transformer

Q4) a) In case of three phase fault at the terminal of an unloaded alternator, prove that $x_{d}^{\prime \prime}<x_{d}^{\prime}<x_{d}$ and $I_{f}^{\prime \prime}<I_{f}^{\prime}<I_{f}$ with mathematical relation and dilăgram. (where I_{f} is fault current)
b) The generating station at Koyna power \&lant is rated at 11 kV with short circuit capacity of 1000 MVA . The generating station at Radhanagar is also rated at 11 kV with shertcircuitcapacity of 670MVA. If these two generating stations are comected With interconnector of reactance $j 0.4 \Omega$, calculate possible shor chrcuit MVA at each station. Take 1000MVA as base (Hint: Short cireuitt MVA = Base MVA/reactance in pu, Take base $M V A=1000 M V A$ and base $R V=11 \mathrm{kV}$).

Q5) a) In case of LLG faulto show that fault current

$$
I_{f}=\frac{-3 E_{a 1}^{\prec} Z_{2}}{Z_{1} Z_{2}+Z_{2} Z_{0}+Z_{0} Z_{1}}
$$

b) A three phase 100MVA synchronous generator with line to line voltage of 11 kV is subjectd to a line to ground fault. The sequence reactance are $x_{1}=j 0.3 \mathrm{pu}, x_{2}=j 0.1 \mathrm{pu}$ and $x_{0}=j 0.05 \mathrm{pu}$. If the generator neutral is grounded through a reactance of $x_{n}=j 0.05 p$, determine fault current and fault voltages. Also determine line curfents and phase voltages of other phases if the fault is on phase a.

Q6) a) An unsmmetrical loaded transmisiondine is given in following figure 2. Show that $Z_{0}=Z_{s}+2 Z_{m}+3 Z_{n}$ and $Z_{1}=Z_{2}=Z_{s}-Z_{m}$

b) The ootential difference to the neutral of a three phase, four wire systems are $36, j 48 \mathrm{~V}$ and 64 V respectively. The currents in corresponding line wires are $(-1+j 2)$ Amp, $(-1+j 5)$ Amp and ($-j 3$) Amp. Calculate negattve sequence power.

Q7) a) Compare HVDC and EHVAC transmisson system based on following points with due justification
i) Insulation requirement
ii) Power transfer capability
iii) Conductor size
iv) Short circuit fauttlevel
b) Draw the complete singletine diagram of HVDC system showing afl components and elaborate any three components in detail.

Q8) a) Write short note on:
i) HomopolakHVDC link
ii) Back-to-Back HVDC link
b) Explain Constant current control in HVDC lines

