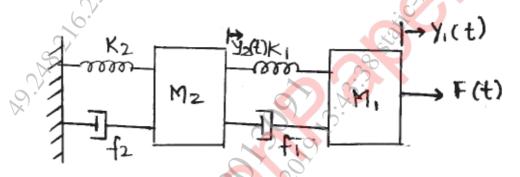
Total No. of Questions : 8]

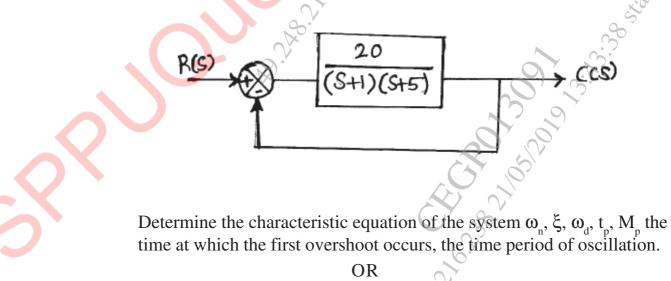
P3611

[5560]-566 T.E.(Electrical) CONTROL SYSTEM - I (2015 Course) (Semester - II)

Time : 2½ Hours]


[Max. Marks : 70

[7]


[Total No. of Pages : 3

SEAT No. :

- Instructions to the candidates:
 - 1) Answer any one question from each pair of questions : Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
 - 2) Figures to the right indicate full marks.
- Q1) a) Draw the electrical analogous network and write the equation

- b) The poles of a real rational transfer function are given as 0, -1 and -4. There is a single zero (of order 2) at S = (-3). Determine the transfer function and plot pole zero on S-plane. [5]
- c) The block diagram of a unity feedback control system shown in figure below.

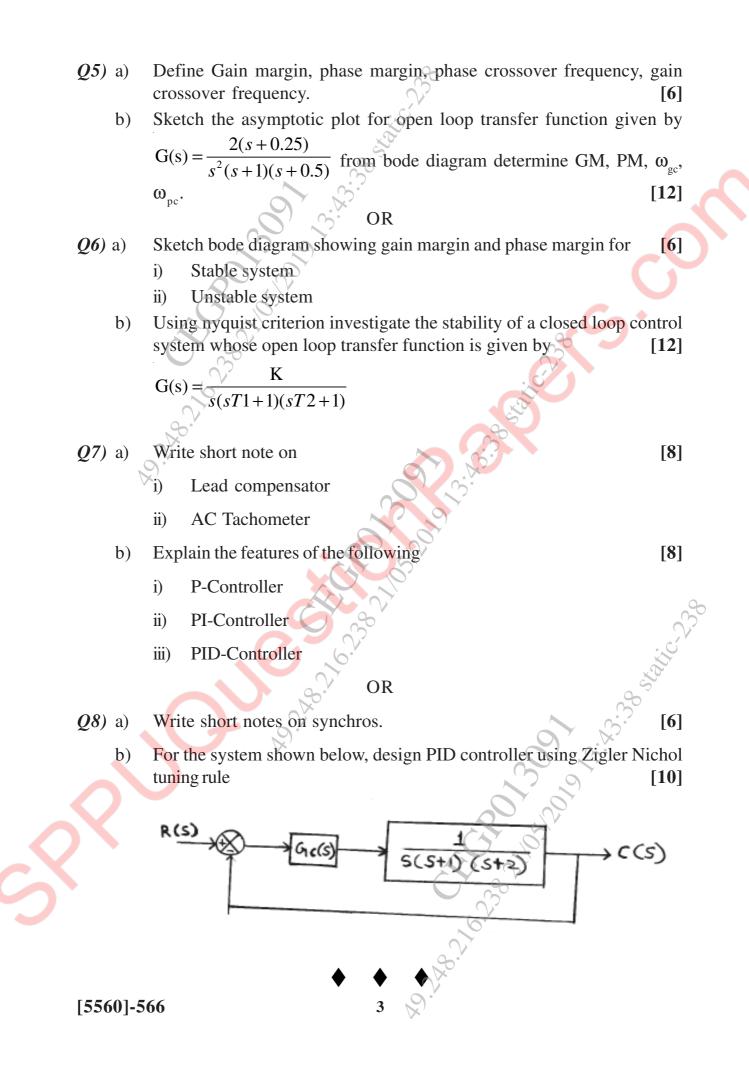
- *Q2*) a) Define the following:
 - i) Time response
 - ii) Transient response
 - iii) Steady state response
 - iv) Delay time
 - v) Rise time
 - vi) Peak time
 - vii) Settling time
 - b) A characteristic equation of a feedback control system is given by $s^5 + s^4 + 4s^3 + 4s^2 + 2s + 1 = 0$ comment on stability. [4]

[7]

[8]

c) A unity feedback control system has an open loop transfer [9]

 $G(s) = \frac{K}{s(s^2 + 4s + 13)}$ Sketch the root locus of the system by determining the following


i) centroid and angle of asymptotes

- i) Angle of departure from the poles
- iii) The value of K and the frequency at which the root locus crosses the imaginary axis.
- (Q3) a) Define and write formula
 - i) Resonant frequency
 - ii) Resonant Peak
 - iii) Band width
 - iv) Plot M, M, versus ξ for a second order system
 - b) A unity feedback system has open loop transfer function

 $G(s) = \frac{(s+2)}{(s+1)(s-1)}$ using nyquist criterion determine whether the closed loop system is stable or not. [8]

OR

Q4) a) Briefly state the nyquist criterion. [6] b) Sketch the bode plot for the system whose open loop transfer function is given by $G(s) = \frac{20(0.1s+1)}{s(0.5s+1)(0.3s+1)}$ and find GM, PM, ω_{gc} , ω_{pc} .[10]

