Total No. of Questions : 4]

PB15

[6268]-209

S.E. (Electrical Engineering) (Insem) NUMERICAL METHODS AND COMPUTER PROGRAMMING (2019 Pattern) (Semester - IV) (203148)

Time : 1 Hour]

[Max. Marks : 30

[Total No. of Pages : 2

SEAT No. :

- Instructions to the candidates:
 - Solve Q.1 or Q.2, Q.3 or Q.4. **1**)
 - Figures to the right indicate full marks. 2)
 - Neat diagrams must be drawn wherever necessary. 3)
 - Assume suitable data, if necessary. **4**)
 - Use of non-programmable calculator is allowed. 5)
- State Descartes's rule of sign. Show that the polynomial equation *Q1*) a) representing the behaviour of an electrical circuit $f(x) = x^7 - 3x^4 + 2x^3 - 17 = 0$ has at least four imaginary roots. [7]
 - State the rules for identifying significant digits in a number and determine b) the same for: [8]
 - i) 124.06
 - 0.02406 ii)
 - 100011.0 iii)
 - iv) 0.230

OR

State the Intermediate value theorem. Show its graphical representation *Q2*) a) & Apply the intermediate value theorem to find range of positive roots:[7]

 $f(x) = x^3 - 5x + 3$

Perform two iterations of Birge-Vieta method to find root of a polynomial **b**) equation representing the behaviour of an electrical circuit with initial approximation $P_0 = 0.5$. [8]

$$f(x) = x^4 - 3x^3 + 3x^2 - 3x + 2$$

P.T.O.

- Obtain the approximate value of $(17)^{\frac{1}{3}}$, correct to four decimal places *Q3*) a) using NR method with initial approximation $x_0 = 2$. [7]
 - The current in a particular circuit is given by $I^3 5I 7 = 0$. Find the b) current value using Regula-Falsi method correct upto 4 decimal places. Take $I_0 = 2$ and L_1 [8]

OR

A series RC circuit is connected across a DC supply of 100V. Voltage **Q4**) a) across a capacitor is recorded at different instant of time. Fit the following data point second order degree curve using least square error method:[7]

	6	
t (in msec)	$V v_c$ (in Volts)	0.20
0	0	
2	33	2 Sat
4	55	00
6	70	
8	80	
10	85	

Is Is an a second secon Perform five iterations of the bisection method to obtain a smallest positive **b**) root of the equation $f(x) = x^3 - 5x + 1 = 0$.