Total No. of Questions : 8]

P9089

SEAT No. :

[Total No. of Pages : 3

[Max. Marks : 70]

[6179]-214

S.E. (Electrical Engineering) NUMERICAL METHODS AND COMPUTER PROGRAMMING (2019 Pattern) (Semester - IV) (203148)

Time : 2½ Hours] Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right side indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if ncessary.
- 5) Use of non programmable calculator is allowed.
- Q1) a) Derive and explain Lagrange's Interpolation method. What are its application?
 - b) Determine by Newtons divided difference interpolation method the percentage number of patients over 40 years, using following data. [6]

Age over (x years)	30 35	45	55
% number of (y) patients	148 96	68	34

c) Using central difference formula find the value of y at x=25 from the following table
 [6]

X	20	24	28	32	6
У	24	32	35	40	
					000

- **Q2)** a) Derive expression for Newton's Forward difference interpolation formula for equidistant points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ [6]
 - b) The day wise total solar radiation (in MJ/m²-day) is collected in the month of May which is required for experimentation. Use the appropriate interpolation Method to find solar radiation corresponding to 8th day. [6]

Day	1	3	5	7	90
total solar radiation (in	15.25	25.42	28.57	27.86	26.43
MJ/m ² -day)				R	SV .

c) The following table shows the viscosity of an oil as a function of temperature. Use Lagrange's interpolation formula to find viscosity of oil at a temperature of 140°
 [6]

Temp (⁰)	110	130	160	190	
Viscosity	10.8	8.1	5.5	4.8	0

P.T.O.

- Q3) a) Derive formula for numerical differentiation of first order using Newton's forward interpolation technique. [6]
 - b) Evaluate the first and second derivative of \sqrt{x} at x = 15 from the following data [6]

$$x + 4y + 2z = -5$$

x + 2y + 5z = 2

 c) State the advantages of Iterative methods over Direct method and Compare Gauss Elimination method and Gauss Jordan method. [6]

[6]

[6179]-214

OR

Determine inverse of the following matrix using Jordan method. [6] **(06)** a)

 $\begin{array}{cccc}
4 & 3 & -1 \\
3 & 5 & 3
\end{array}$

Explain Gauss Elimination Method for solution of linear algebraic b) equations. (problem solving is not expected) [6]

- Solve the following equations by using Gauss seidel method correct up 1 c) to 4 decimal places and show 3 iterations. [6] $10x_1 + 2x_2 + x_3 = 9$ $x_1 + 10x_2 - x_3 = -22$ $2x_1 + 3x_2 + 10x_3 = 2$ using initial conditions $x_1 = x_2 x_3 = 0$
- Explain Taylor series method for the solution of ordinary differential **Q**7) a) equation. [6]
 - Find the value of x = 0.1 for the equation $\frac{dy}{dx} = 1 + xy$ and y(0) = 1. **b**)

[6]

Take step size h = 0.1 by Taylor series method.

Apply Euler's method to find y(1,1). Given $\frac{dy}{dx} = xy$, y(1) = 5. Show 5 c) iterations.

Derive the formula for Euler's method to solve $\frac{dy}{dx} = f(x, y)$ also show **Q8)** a) graphically effect of reduction in step size in the Euler method. [6]

A resistance of 100 ohm and inductance of 0.5 Henry are connected in b) series with a battery of 15V. If i(0)=0, find the current flowing through the inductor at 0.001 sec using 4th order Runge Kutta method. Take interval of 0.001 sec. [6]

Find y(0.1) for $y'=x^2+y$, x0 = 0, y0 = 0.94 with step length 0.1 using c) Modified Euler method. [5]

[6179]-214