S.E. (ElectricalEngineering)

 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2019 Pattern) (Sémester - IV) (203148)
Time : $2^{1 ⁄ 2}$ Hours]

[Max. Marks: 70

Instructions to the candidates:

1) Answer Q1 or 24, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Figures to the right side indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitable additional data, if ncessary.
5) Use of non-programmable calculator is allowed.

Q1) a) Derive and explain Lagrange's Interpolation method. What are its application?
b) Determine by Newtons divided difference interpolation method the percentage number of patients over 40 years, using following data. [6]

Age over (x years)	30	35	45	55
\% number of (y) patients	148	96	68	34

c) Using central difference formula find the value of y at $x=25$ from the following table

x	20	24	28	32
y	24	32	35	40

Q2) a) Derive expression for Newton 's Forward difference interpolation formula for equidistant points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \ldots \ldots \ldots . .\left(x_{n}, y_{n}\right)$
b) The day - wise total solar radiation (in $\mathrm{MJ} / \mathrm{m}^{2}$-day) is collected in the month of May which is required for experimentation. Use, the appropriate interpolation Method to find solar radiation corresponding tio $8^{\text {th }}$ day. [6]

Day	1	3	5	7	9
total solarradiation (in $\mathrm{MJ} / \mathrm{m}^{2}$-day)	15.25	25.42	28.57	27.86	26.43

c) The following table shows the viscosity of an oil as a function of temperature. Use Lagrange's interpolation formula to find viscosity of oil at a temperature of 140°

Temp $\left({ }^{\circ}\right)$	110	130	160	190
Viscosity	10.8	8.1	5.5	4.8

Q3) a) Derive formula for numerical differentiation of first order using Newton's forward interpolation technique.
b) Evaluate the first and second derivative of $\sqrt{ } \mathrm{x}$ at $\mathrm{x}=15$ from the following data

x	15	17	19	2.	23
$\sqrt{\mathrm{x}}$	3.873	4.123	4.354	4.583	4.796

c) Determine the integoration using simpsons $\frac{3}{8}$ th rule. Take $\mathrm{h}=0.1 \int_{0}^{1} \frac{1}{1+x^{2}} d x$

OR

Q4) a) Derive Trapezoidal rule for numerical integrationas a special case of Newton's' Cote formula
b) A riwer is 80 m wide. The depth d in meters at a distance x meters from one bank is given in the following table

$\mathrm{P}(\mathrm{m})$	0	10	20	30	40	50	60	70	80
$\mathrm{D}(\mathrm{m})$	0	4	7	8	12	D^{15}	14	8	3

Find approximately the area of cross §ection by

1) Trapezoidal rule
2) Simpson's $1 / 3^{\text {rd }}$ rule
c) Compute $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y$ by taking step sizes for both x and y are 0.5 using Trapezoidal Rule

Q5) a) Explain Gauss - Seidél method for solution of linear simultanneouse̊quation. (Numerical is notexpected)
b) Using Jacobi iterative method solve the following system of linear simultaneous equations. [6] Take $\mathrm{x}(0)=\mathrm{y}(0)=\mathrm{z}(0)=0$ perfórm 5 iterations. $3 x+y+z=2$
$x+4 y+2 z=-5$
$x+2 y+5 z=2$
c) State the advantages of Iterative methods. over Direct method and Compare Gauss Elimination method and Gauss Jordan method.

Q6) a) Determine inverse of the following matrix using Jordan method.
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right]$
b) Explain Gauss Elimination Method for solution of linear algebraic equations. (problem sofving is not expected)
c) Solve the following eqquations by using Gauss seidel method correct up 1 to 4 decinalplaces ánd show 3 iterations.
$10 x_{1}+2 x_{2}+x_{3}=9$
$x_{1}+110 x_{2}-x_{3}=-22$
$2 x+3 x_{27}+10 x_{3}=2$
using initial conditions $x_{1}=x_{2} x_{3}=0$
Q7) a) Explain Taylor series method for the solution of ordinary differential equation.
b) Find the value of $x=0.1$ for the equation $\frac{d y}{d x}=1+x y$ and $y(0)=1$. Take step size $h=0.1$ by Taylor serfés method.
c) Apply Euler's method to find y(1). Given $\frac{d y}{d x}=x y, y(1)=5$. Show 5 iterations.

Q8) a) Derive the formula for Euler's method to solve $\frac{d y}{d x}=f(x, y)$ also show graphically effect of reduction in step size in the Eulermethod $0^{\circ} \quad$ [6]
b) A resistance of 100 ohm and inductance of 0.5 Heng are connected in series with a battery of 15 V . If $\mathrm{i}(0)=0$, find the current flowing through the inductor at 0.001 sec using 4th order Runge Kutta method. Take interval of 0.001 sec .
c) Find $y(0.1)$ for $y^{\prime}=x^{2}+y, x 0=0, y 0=0.94$ with step length 0.1 using Modified Euler method.

