PA-4966

[6008]-215

SEAT No. :

[Total No. of Pages : 2

[Max. Marks : 30

S.E. (Electrical Engineering) (Insem) NUMERICAL METHODS AND COMPUTER PROGRAMMING (2019 Pattern) (Semester - II) (203148)

Time : 1 Hour]

Instructions to the condidates:

- 1) Solve Q1 or Q2, Q3 or Q4.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- 5) Use of a non-programmable calculator is allowed.
- Q1) a) Solve the following equation using the Birge-Vieta method. $x^3 + x^2 - 1 = 0$

[7]

The initial approximation is $p_0 = 2$. Solve only Two iterations.

b) Write the statement of Descartes's rule of the sign. The equation of one of the systems is given by $x^4 - 10x^3 - 120x^2 + 320x + 1024 = 0$. Apply Descartes's rule of the sign to the above characteristics equation and find the number of real positive roots, real negative roots, and complex roots in the above equation. [8]

OR

Q2) a) The two numbers a and b with absolute error $\varepsilon a1$ and $\varepsilon a2$. Prove that

absolute error in a * b is $a \in a^2 + b \in a^1$ and absolute error in $\frac{a}{b}$ is

$$\frac{b\varepsilon a^1 - a\varepsilon a^2}{h^2}$$
.

[7]

b) Explain the intermediate value theorem along with its graphical representation. How the intermediate value theorem is represented mathematically?

Apply the intermediate value theorem to the following equation to find a range of positive roots : [8]

 \bigtriangledown

$$f(x) = \cos x - 3x + 1$$

P.T.O.

- Find the real root of $xe^x 2 = 0$ correct to three places of decimals using *Q3*) a) Newton Raphson method with the interval as 1. [7]
 - Evaluate the root of the equation by using the Regula Falsi method. The b) intervals are (2, 3). Solve only 4 iterations correct up to 4 decimal places. $f(x) = x^3 - 5x - 7$ [8]

IF P is the pull required to lift a load W by means of a pulley block, find **Q4**) a) a linear law of the form P = C + mW connecting P and W, using the following data

	12	15	21	25	
W WO	50	70	100	120	2
				()#	A

Where P and W are taken in kg-wt. Compute P when W = 150 kg. [7]

9.26.2000 1025-16:19 - 100 - 1

By using the bisection method find an approximate root of the equation b) $\frac{1}{x}$, that lies between x = 1 and x = 1.5 (measured in radian) carry out computations up to 7th stage [8]

2

OR