[6008]-215
 S.E. (Electrical Engineering) (Insem)
 NUMERICALMETHODS AND COMPUTER PROGRAMMING (2019 Patern) (Semester - II) (203148)

Time : 1 Hour]

[Max. Marks : 30

Instructions to the eandidates:

1) Solve QI or Q2, Q3 or Q4.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitable additional data, if necessary.
5) Use of a non-programmable calculator is allowed.

Q1) a) Solve the following equation using the Birge-Vieta method.

$$
x^{3}+x^{2}-1=0
$$

The initial approximation is $p_{0}=2$. Solve only Two iterations.
b) Write the statement of Descartes's rule of the sign. The equation of one of the systems is given by $x^{4}-10 x^{3}-120 x^{2}+320 x+1024=0$. Apply Descartes's rule of the Sign to the above characteristics equation and find the number of real positive roots, real negative roots, and complex roots in the above equation.
[8]

OR

Q2) a) The two numbers a and b with absolute error $\varepsilon a 1$ and $\varepsilon a 2$. Preve that absolute error in $a * b$ is $a \varepsilon a 2+b \varepsilon a 1$ and absolute error in $\frac{a}{b}$ is $\frac{b \varepsilon a 1-a \varepsilon a 2}{b^{2}}$.
b) Explain the intermediate value theorem along with its graphical representation. How the intermediate value heorem is represented mathematically?
Apply the intermediate value theorem to the following equation to find a range of positive roots :

$$
f(x)=\cos x-3 x+1^{\circ}
$$

Q3) a) Find the real root of $x e^{x}-2=0$ correct to three places of decimals using Newton Raphson method with the interval as 1.
b) Evaluate the root of the equation by using the Regula Falsi method. The intervals are $(2,3)$. Solve only 4 iterations correct up to 4 decimal places. $f(x)=x^{3}-5 x-7$

Q4) a) IF P is the pull required to lift a load W by means of a pulley block, find a linear law of the form $\mathrm{P}=\mathrm{C}+\mathrm{mW}$ connecting P and W , using the following data

P	x^{\prime}	12	15	21
W	5	25		

Where Pand W are taken in kg-wt. Compute P whenW $=150 \mathrm{~kg}$.
b) By using the bisection method find an approximate root of the equation $\sin x=\frac{1}{x}$, that lies between $x=1$ and $x=1.5$ (measured in radian) carry oout computations up to $7^{\text {th }}$ stage.

