\square

S.E. (Electrical)
 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2019 Pattern) (Semester - IV) (203148)

Time: $\mathbf{2}^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candidates.

1) Answer Q1 or Q2,Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat didgोams must be drawn wherever necessary.
3) Assume suitavie data, jf necessary.
4) Use of logavithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is permitted.
5) Assume suitable data, if necessary.

Q1) a) Prove
i) $\Delta-\nabla=\Delta \nabla$
ii) $(1+\Delta)(1-\nabla)=1$
b) Following table gives the distance in nautical miles of the visible horizon for the given heights in feet above earth.

X height	200	250^{\prime}	300	350	400
Y distance	15.04	216.81	18.42	19.90	21.27

Find the distance when height is 218 feet.
c) Derive the formulla for Newton's forward interpolation formula for the equally spaced data points.

OR
Q2) a) Find $\mathrm{f}(10)$ of the cubic function passing through the points $(4,-43)(7,83)$ $(9,327)$ and $(12,1053)$ using Newtons divided difference formula.
b) Derive Lagrange's Interpolation formula for unequally spaced data points.[6]
c) Apply Bessel's central difference formula to obtain $f(32)$ given that [5] $\mathrm{f}(25)=0.2707 \quad \mathrm{f}(30)=0.3027 \quad \mathrm{f}(35)=0.3386 \quad \mathrm{f}(40)=0.3794$

Q3) a) Derive Trapezoidal rule for numerical integration as a special case of Newton's Cote formula.
b) A river is 80 m wide. The depth in meters at a distance x meters from one bank is given in the following table
[6]

$\mathrm{X}(\mathrm{m})$	0	10	20	-30	40	50	60	70	80
$\mathrm{D}(\mathrm{m})$	0	4	7	$?$	8	12	15	14	8

Find approximately the area of cross section by
i) Trapezoidal_ule
ii) Simpson’s $1 / 3^{\text {rd }}$ rule.
c) Derve formula for numerical differentiation of first order using Newton's foward interpolation technique.

Q4) a) Evatuate $\int_{0}^{1} \int_{0}^{1}(x+y) d x d y$ using Simpsons $1 / 3$ rule with $\mathrm{h}=\mathrm{k}=1 / 2$
b) Evaluate the first and second deri@tive of x at $x=15$ from the following data
[6]

x	15	17	19	21	23
V_{x}	3.873	4.123	4354	4.583	4.796

c) Derive Simpson's $1 / 3^{\text {rd }}$ rue formumerical integration as a special case of Newton's Cote formula.

Q5) a) Solve the system of equations by Gauss Jordan method $x+y+z=9$
$2 x-3 y+4 z=12$
$3 x+4 y+5 z=40$
b) Use Gauss Seidel method to solve the following system of equations[6] $6 x_{1}++x_{2}+x_{3}=105$
$4 x_{1}+8 x_{2}+3 x_{3}=155$
$5 x_{1}+4 x_{2}-10 x_{3}=65$
c) Explain Gauss Jacobi method for the solution of linear simultaneous equations.

Q6) a) Explain Gauss-Seidal method for solution of linear simultaneous equation. (Numerical is not expected)
b) Apply Gauss Jordan method to find inverse of
$\mathrm{A}=\left[\begin{array}{ccc}3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1\end{array}\right]$
c) Using Jacobl iterative method solve the following system of linear simultaneous equations. Take $x(0)=y(0)=z(0)=0$ perform 5 iterations.[6] $3 x+y+z=2$
$x+4 y+2 z=-5$
$x+2 y+5 z=2$
Q7) a) Use 4 $4^{\text {min }}$ order RK method to estimate approximate value of y for $x=0.1$ with step size is 0.1 , if $d y / d x=x+y^{2}$ given that $y=1$ when $x=0$.
b) Apply Euler's method to find (e.1). Given $\frac{d y}{d x}=x y, y(1)=5$. Show 5 iterations.
c) Explain Euler's method for the solution of ordinary differential equation.[6]

Q8) a) Explain Taylor's series method for solution of ordinary differential equations.
b) Use Runge Kutta second order method of find an approximate value of y correct to threeplaces of decimal when $x=0.1$, given that $y=1.2$ when $x=1$ and $\frac{d y}{d x}=3 x+y^{2}$.
c) Find the value of $x=0.1$ for the equation $\frac{d y}{d x}=1 \oplus x y$ and $y(0)=1$. Take step size $h=0.1$ by Taylor series methoo.

$x \quad x$

