\square

S.E. (Electrical Engineering) NETWORK ANALYSIS
 (2019 Patern) (Semester - IV) (203147)

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer $Q .1$ or $Q .2, Q .3$ or $Q .4, Q .5$ or $Q .6, Q .7$ or $Q .8$.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use of calculator is allowed.
5) Assume suitable data if necessary.

Q1) a) What is time constant? State time constant in case of Series R-L circuit and series R-C circuit.
b) In the network shown in Fig. 1 switch is closed at $t=0$ with capacitor is uncharged. Find the value of $i\left(0^{+}\right), \frac{d i\left(0^{+}\right)}{d t}, \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}$.

c) In the circuits in Fig. 2. The switch is closed at $t=0$.
i) Obtain expression for current in thecircuit for $t>0$. Using the classical method.
ii) Find value of current at $t=0.25$ seco

Fig. 2

OR
Q2) a) A coil which has an inductance of 40 mH and a resistance of 2Ω is connected to form an LR series circuit. If they are connected to a 20 V DC supply. Find
i) Value of the induced emfafter $\int 0 \mathrm{~ms}\left[v(t)=v e-\frac{\mathrm{R}}{\mathrm{L}} t\right]$.
ii) The final steady state value of the current.
iii) Time constant of the RD-series circuit.
b) In the network shown in Fig. 3, switch is closed at $t=0$. Find the valué of $i\left(0^{+}\right), \frac{d i\left(0^{+}\right)}{d t}, \frac{d^{2} i\left(0^{+}\right)}{d t^{2}}$ Assume the initial current of inducter to be zero.

Fig. 3
c) In R-L-C circuit Fig. 4 is excited byd.C. voltage source. Find current $i(t)$ using conventional method. The switch is closed at time $t=0$. [6]

Q3) a) Find the inverse Laplace transform of given network given $\mathrm{F}(\mathrm{s})$.

$$
F(s)=\frac{(s+2)}{s(s+3)}
$$

b) Find the Laplace transform of given network given $f(t)$.

$$
f(t)=e^{3 t} \cdot \sin 2 t+t \cdot e^{-2 t}
$$

c) Obtain $f(t)$ for the sighal shown in Fig. 5. Also determine Laplace transform of $f(t)$.

OR

Q4) a) Determine resultant current $i(t)$ if switch is closed at $t=0$. In R-L-C series circuit Fig. 6 by using Laplace transform.

Fig. 6
b) Solye the differential equation $\frac{d^{2} x(t)}{d t^{2}}+3 \frac{d x(t)}{d t}+2 x(t)=4 e^{t}$, where $x\left(0-1, x^{\prime}\left(0^{-1}\right)=-1\right.$.

Q5) a) \ltimes Develop relation between ' Z ' parametenand transmission parameter .
b) Explain the following in relation with filters.
i) stop band.
ii) pass band.
iii) cut-off frequency.
c) Obtain y-parametersfof two port network for the given network in the fig. 7.

Fig. 7

OR

Q6) a) Define $A B C D$ parameters and Hybrịd parameters of two port networks.
b) Design constant K-low pass filter to have a cut-off frequency of 796 Hz when terminated in a 600Ω resistance in both the T and π configurations.
c) Obtain Z-parameters of two-port network for the given network in the Fig. 8.

Fig. 8

Q7)
a) Define :
i) Poles of system function.
ii) Zeros of system funetion.
b) The voltage $\mathrm{V}(\mathrm{s})$ in a network given by :
$\mathrm{I}(\mathrm{s})=\frac{2 s}{(s+1)(s-3)}$
Plot poles and zeroscin the plane and obtain time domain response of current.
c) Find the driving point admittance $\mathrm{Y}_{11}(s)$ for the hetwork shown in Fig. 9 and plot pole-zone diagram.

Fig. 9
OR

Q8) a) Define various network functions of a one-port network.
b) Find the driving point impedance $Z_{11}(s)$ for the network shown in Fig. 10

Fig. 10
c) The voltage $\mathrm{V}(\mathrm{s})$ in a network given by :

$$
y(s)=\frac{5(s+5)}{(s+2)(s+7)}
$$

Plot poles and zeros in the plane and obtain time domain response of voltage.

