## [5869] 236 <br> S.E. (Electrical) <br> POWERSYSTEMS - I (2019 Patterin) (Semester - IV)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the candìlates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams mustbe drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Assume suitable data if necessary.

Q1) a) Explain what are factors to be consider for selecetion of span length hence, state factors affecting sag of transmission fine.
b) Describe advantages and limitations of following insulators.
1). Pin insulator.
$\times$ ii) Shackle insulators.
iii) Strain insulators.
c) Each conductor of 3 phase line is suspended by 4 suspension insulators. If voltage distribution acrosssecond and third insulators from top are 13.6 kV and 17.8 kV respectively find voltage between the conductors.[6] OR
Q2) a) State following statements are True of False.
i) Guard rings are used fo reduce the earth capacitance in suspension insulators.
ii) Bushings used for large capacity of transformers are generally solid porcelain bushings.
iii) Slant sag can be calculated by dividing vertical sag by cos $\theta$.
iv) In overheadransmission lines, tension at any ooint enconductor will act horizontally.
v) In suspension insulator string, disc nearest to the conductor is highly stressed.
b) A transmission line has a span of 220 m between Tevel supports. The conductor has cross sectional area of $2,5 \mathrm{~cm}^{2}$ The tension in the conductor is 2000 kg . If the weight of the conductor is $2 \mathrm{~kg} / \mathrm{m}$ and wind pressure is $2.05 \mathrm{~kg} / \mathrm{m}$ calculate vertical sag.
c) A 3 phase 80 kV transmission line is supported by 3 suspension insulators. If the ratio of shunt capacitance to self-capacitance is 0.68 Determine.[6]
i) Voltage distribution across each wnit.
ii) String efficiency.

Q3) a) Write a short note on.
i) Skin effect.
ii) Proximity effect.
b) Derive an expression for the inductance of three phase overhead transmission ling whemconductors are unsymmetrical spaced but transposed.
c) A three phase transmission line has its conductors at the corner of equilatear triangle with side of 3 meter. The diameter of each conductor is 1.6 centimetre. Find inductance per phase per kilometre of line.

Q4) a) Derive an expression for flux linkages due to sigńle current carrying conductor.
b) Explain the concept of GMD and GMR for inductance calculation. [6]
c) What is meant by transposition of Conductors in an overhead line? Why it is essential? How it is carriedout?

Q5) a) Derive an expression for capacitance per kilometre of single phase overhead line having distance $P$ ' beteween the conductors and ' $r$ ' is the radius of each conductor.
b) Explain the concept of self GMD or GMR for capacitance calculation [5]
c) Calculate the capacitance of 100 kilometre long three phase, 50 Hz transmission line consisting of three conductors, each of 2 centimetre diameter and spaeed 2.5 meter at the corner of an equilateral triangle.[6]
OR

Q6) a) Derive an expression for the capacitance to neutral of a three phase line with equilateral spacing.
b) A single phase transmission line has two paratel conductors 3 meter apart, radius of each conductor is 1 centimetre, Calculate the capacitance of line per kilometre.
c) Define term electric potential. Derive an expression for electric potential for single charged conductor.

Q7) a) Derive the expression for ABCD constants of medium transmission line considering nominal ' $\pi$ ' model of the line.
b) Calculate ABCD constants forthree phase 50 Hz transmission line with following line parameters.
Use Nominal 'TOmethod.
$\mathrm{R}=24 \Omega$, $\mathrm{L}=0.192 \mathrm{H} \mathrm{Ce}=1.28 * 10^{-6} \mathrm{~F} \mathrm{G}=0$
c) State performance parameters of transmission line hence explain how ABCD onstants are useful for determining these parameters.

Q8) a) Define gemeralised circuit constants of transmissionfine, write general relationship between sending end and receiving end quántities hence state properties of transmission lines from ABCD constants.
b) Anoverhead 3-phase short transmission line delivers 4.5 MW at 22 kV with 0.78 p.f. lagging at receiving rend. The resistance \& reactance of each conductor is $5 \Omega \& 6 \Omega$ respectively. Determine: Sending end voltage, sending end power factor and percentage regulation.
c) Draw neat circuit diagram and phasor diagram of following transmission line models.
i) Medium transmission line Nominal ' $T$ ' model.
ii) Medium transnaission line Nominal ' $\pi$ ' model.

## *

