P616

SEAT No. : \square
[Total No. of Pages : 3

[5869]-238
 S.E. (Electrical Engineering) NETWORK ANALYSIS (2019 Pattern) (Semester - IV)

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Use of calculator is allowed.
5) Assyme suitable data, if necessary.

Q1) a) In the circuit shown in fig. no. 1 imitrally switch is kept open for long time. At $t=0$, switch K is closed Qbtainexpression for current at $t>0$. Find the value of the current at $\ddagger=0.25, \mathrm{sec}$. What will be the current in circuit in one time constant period.

b) Explain the behaviour of R, L and C elements for transients. Mention the representation at the instant of switching.
c) Obtain the expression for voltage across apacitorin series RC circuit connected to a. d. c. voltage V for $\mathrm{t}>0$ Assume initial charge across capacitor is zero.

Q2) a) What is time constant? Explain time eonstant in case of series R-L and series $\mathrm{R}-\mathrm{C}$ circuit.
b) A series R-L-C circuit showñan fig. no. 2 is excited by DC voltage source. Find current $i(t)$ using conventional method. The switch is closed at $\mathrm{t}=0$

Fig. No. 2
Q3) a) State and prove initial and final value theorem.
b) Find the Laplace transform of the function.
$\mathrm{f}(\mathrm{t}) \mathrm{O}=\mathrm{t}$ for $0<\mathrm{t}<1$
$y=0$ for $t>1$.
c) ${ }^{\text {State any six properties of Laplace Transform. }}$

Q4) a) Derive the relation betweemant step function and unit ramp function.[6]
b) Find the Laplace transform of sio $\omega \mathrm{t}$.
c) Find $i(t)$, by using convolution integral :

$$
F(s)=\frac{1}{s^{2}+9 s+18}
$$

Q5) a) Express hybrid parameters in terms of transmission line parameters. [9]
b) Find Z parametes of the network shown in figure no. ${ }^{3}$

Fig. No. 3
OR

Q6) a) What is high pass filter? Derive the expression for the cut-off frequency of prototype low pass filter in terms of L and C.
b) Design a prototype high pass filter sections if design impedance $R_{0}=600$ ohm and cut-off frequency $f=1000 \mathrm{~Hz}$.

Q7) a) State and explain all pessible network functions of one port network.[9]
b) Determine the driving point impedance for the network shown in fig. No. 4

Fig. No.
OR
Q8) a) What is pole-zero plot? Explain with suitable example.
b) Obtain the pole zero plot the s-plane of the driving point impedance function for the network shown fig. no. 5

Fig. No. 5

