Total No. of Questions-8]

[Total No. of Printed Pages-4

Seat No.

[5459]-158

S.E. (Electrical) (II Semester) EXAMINATION, 2018 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2015 **PATTERN**)

	(2015 PATTERN)
Time : 2	Hours Maximum Marks : 50
<i>N.B.</i> :−	(i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No.
	4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
	(<i>ii</i>) Neat diagrams must be drawn wherever necessary.
	(<i>iii</i>) Figures to the right indicate full marks.
	(<i>iv</i>) Use of logarithmic tables, slide rule, Mollier charts, electronic
	pocket calculator and steam tables is allowed.
	(v) Assume suitable data, if necessary.
1. (<i>a</i>)	Give the syntax of 'for loop', 'while loop' and 'do-while-loop'
	used in C language. [6]
<i>(b)</i>	The measured length of bridge and river are 9999 cm and
	9 cm respectively but the true values are 10,000 cm and 10
	cm respectively. Compute and comment on :
	(i) Absolute error
	(ii) Percentage Relative error.
	Or Or
2. (<i>a</i>)	Explain the following instructions used in C language. [6]
	(1) printf
	(2) scanf
	(3) getch (5.7)
(<i>b</i>)	(<i>i</i>) Add the following floating point numbers : 243.31947E17
	and 32.1698E14.
	P.T.O.

Subtract the following floating point numbers : 37.9314E19 (ii)from 416.21943E18.

[6]

Divide 317.23E33 by 32.17E18. (iii)

Х

0

1

 $\mathbf{2}$

4

Temp

140

150

Solve the following equation $f(x) = e^{-x} - x = 0$ using Secant 3. (a)method. Show 4 iterations. Take $x_0 = 0$, $x_1 = 1$. [6]

(*b*) Find f(3) using Newton's Divided difference technique : [7]

Y

1

15

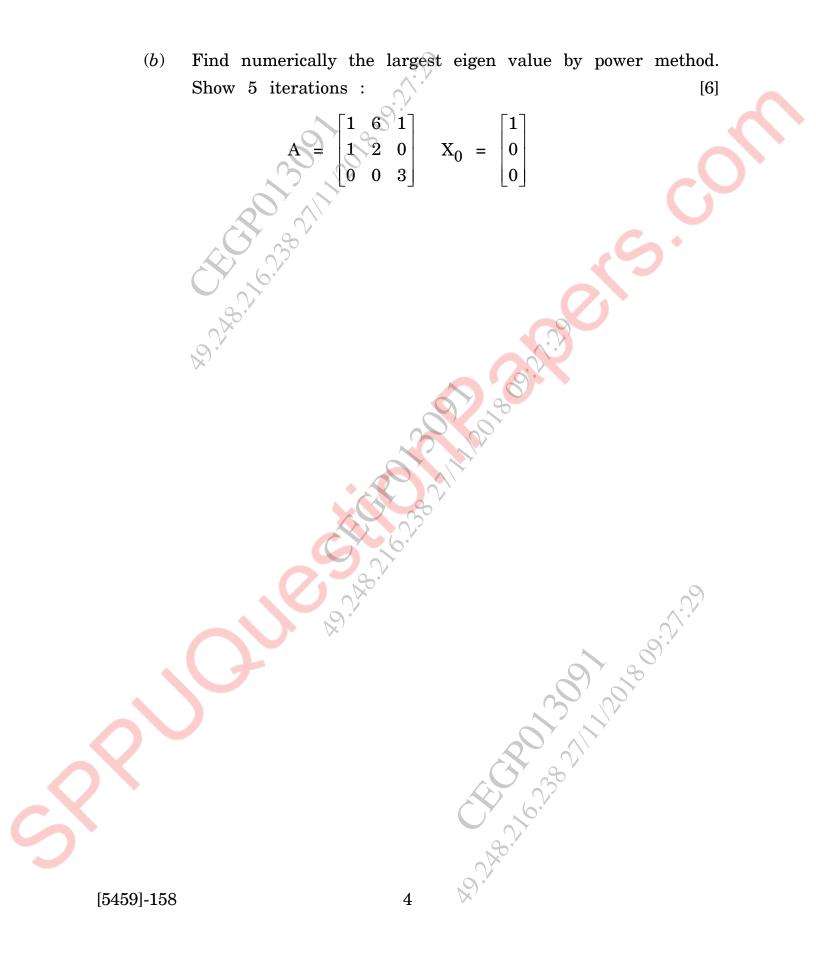
85

Pressure

3.685

4.854

The following is data from steam table, using Newton's forward 4. (a)interpolation, find pressure of steam for a temp of 142°: [6]


Or

160 6.302 170 8.076 180 10.225 Fit a straight line to the following data by method of least *(b)* squares considering y as a dependent variable [7]

X	Y
5	16
10	19
15	23
20 25	.26
25	30
	2

[5459]-158

5. (a) Solve
$$\frac{dy}{dx} = xy + y^2$$
, $y(0) = 1$ to get y at $x = 0.1$ using RK
4th order method. Take $h = 0.1$. [6]
(b) Compute the value of : [7]
 $\int_{1}^{2} \frac{dx}{x}$
using Simpson's 1/3 rule and trapezoidal rule, taking $h = 0.25$.
Or
6. (a) Using Simpson's rule integrate : [7]
 $\int_{0}^{1} \int_{0}^{1} \frac{1}{1 + x + y} dx dy$
Take $h = k = 0.5$.
(b) Apply modified Euler's method to find $y(0.1)$. Given $\frac{dy}{dx} = xy$,
 $y(0) = 1$. Show 3 iterations. [6]
7. (a) Find [A]⁻¹ using Gauss-Jordan method : [6]
 $A = \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix}$
(b) Use Jacobi method to solve the following system of equations at the end of 5th iterations. Use initial values as $x = 0$,
 $y = 0$ and $z = 0$. [6]
 $8x - 3y + 2z = 20$
 $4x + 11y - z = 33$
 $6x + 3y + 112z = 35$
Or
8. (a) Explain Gauss Elimination method for solution of linear simultaneous equations. [6]
[5459]-158 3 P.T.O.

