Total No. of Questions—8]

[Total No. of Printed Pages—5

Seat	
No.	2

[5459]-157

S.E. (Electrical Engg.) (Second Semester) EXAMINATION, 2018

NETWORK ANALYSIS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. Nos. 1 or 2, Q. Nos. 3 or 4, Q. Nos. 5 or 6, Q. Nos. 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Using mesh analysis, find the magnitude of dependent source. [7]

Fig. 1

(b) Find Norton's equivalent circuit for the network shown in Fig. 2: [6]

Fig. 2

Or

- 2. (a) State and explain the concept of duality with suitable example. [6]
 - (b) Using superposition theorem, calculate current 'i' for the circuit shown in Fig. 3: [7]

Fig. 3

3. (a)Using classical theory, find voltage across inductor at time t = 2, sec, after switch is opened : [6]

Fig. 4

For the circuit shown in Fig. 5 solve for i(t) using Laplace (*b*) transform with switch 'k' closed at t = 0: [6]

Fig. 5

Or

R-L-C circuit is excited by D.C. voltage source. Find current 4. i(t) using conventional method. The switch is closed at time t = 0.[6]

Fig. 6

(b) In the circuit shown in Fig. 7, the switch is moved to position 2 at time t=0, find the expression of current for time t>0, using Laplace transform : [6]

Fig. 7

- **5.** (a) Obtain 'Y' parameters in terms of transmission parameters. [6]
 - (b) Draw poles and zeros plot in the S plane of the driving point impedance function for the network shown in Fig. 8: [7]

Fig. 8

Or

6. (a) Find transmission parameter for the network shown in Fig. 9: [7]

- (b) Explain the necessary conditions for transfer function. [6]
- 7. (a) Derive an expression for characteristic impedance (Z_{OT}) and $Z_{O\pi}$, attenuation constant (a) and phase constant (b) of constant k high pass filter from symmetrical network. [6]
 - (b) Design a prototype low pass filter (π and T section) if design impedance $R_0 = 500 \Omega$ and cut-off frequency $f_c = 2000 \text{ Hz}$. [6]

Or

- **8.** (a) Explain the following in relation with filters:
 - (i) stop band
 - (ii) pass band
 - (iii) cut-off frequency.
 - (b) A prototype high pass filter has cut-off frequency of 10 kHz and design impedance of 600 Ω. Find value of L & C. Also find attenuation in dB and phase shift in degrees at frequency of 8 kHz.