Total No.	of Questions—8]	[Total No.	of Printed Pages	—2
Seat No.			[5668]-1	51
S.E. (Electrical Engineering) (I Sem.) EXAMINATION, 2019				
POWER GENERATION TECHNOLOGIES				
(2015 PATTERN)				
	wo Hours		aximum Marks :	
N.B. := (<u>~</u> 0.			4,
	Q. No. 5 or Q. No.		5	
(J)	Figures to the right		narks.	
Stit	(i) Assume suitable data	a, if necessary.		
1. (A)	Explain Carnot cycle wi	th PV and TS	Diagram.	[6]
(B)	Explain coal handling sys	stem in thermal	power plant with n	leat
	flow chart.	20		[6]
		Or		S
2. (A)	Explain working of Air-	preheater and e	economiser in ther	mal
	power plant and show	its location in	layout.	[6]
(B)	With the help of diagram	n explain the d	liesel power plant.	[6]
3. (A)	Explain the following te	erms with sket	ches :	[6]
	(i) Water hammer	5	2. 18,	
	(ii) Surge tank	G		
	(iii) Spillways.		P	
(B)	Derive power in a wind	and environme	ental impacts of W	ind
	Turbines.	20		[6]
		N. 228.	Р.	Г.О.

- Orite Explain hydrograph and flow duration curve with example. [6] 4. (A)
 - Explain working of vertical type wind turbine with (B) diagram. [6]
- Explain the process Biomass energy conversion. 5. (A) [6] Explain the Shading impacts on I-V curves of PV cells. [7] **(B)** Or
- Explain the process of municipal solid waste to energy conversion 6. (A) with diagram. [6]
 - With the help of diagram explain the main concept of solar (\mathbf{B}) thermal power plant. [7]

[6]

- Define the terms in solar energy system : 7. (A)
 - (*i*) Solar constant
 - Cloudy index (ii)
 - Concentration ratio. (iii)
 - Explain grid connected renewable systems and their require-(**B**) 69:5 ments. [7]

Or

- Explain the working of PV cell and Simplest Equivalent Circuit (\mathbf{A}) for a Photovoltaic Cell. [6]
 - Describe the fuel cells. How are they used for energy storage **(B)** requirements ? [7]

[5668]-151

8.

 $\mathbf{2}$