Total No. of Questions: 8	3]
----------------------------------	----

PD45	7	6
-------------	---	---

SEAT No.:			
[Total	Nο	of Pages	. 4

[6404]-81

B.E.(Computer Engineering)

DESIGNANDANALYSIS OF ALGORITHMS

(2019 Pattern) (Semester - VII) (410241)

Time : 2½ *Hours*]

[Max. Marks: 70

Instructions to the cardidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- 4) Figures to the right indicate full marks.
- **Q1**) a) Give a mathematical formulation for:

[8]

- Fractional Knapsack problem
- ii) 0/1 Knapsack problem.
- b) Consider a set of seven activities. The start and finish time of these activities are given in the following table. [9]

Activity	Start time	Finish time
A	1	3
В	3	64
С	2 0	5
D	0	7
Е	5	9
F	8	10
G	11	12

Use the greedy algorithmic strategy to compute an execution schedule having maximum number of non-conflicting activities.

OR

- Q2) a) With respect to dynamic programming, what is the principle of optimality?Give a mathematical representation for the same. [7]
 - b) Consider the 0/1 Knapsack problem with the total weight capacity of 7. The weights and associated values (profits) of 4 items are given below. Use dynamic programming approach to find the optimal solution to this problem. [10]

Item	Weight	Value(Profit)
A	100	1
В	3	X
С	24	5
D	550	7

Q3) a) Consider a graph, which is represented by the adjacency matrix given below: [10]

	Ao.	В	С	D
A	Ø	1	1	0
\mathbf{B}	1	0	0	1
C	1	0	0	1
D	0	1	1	0

We wish to colour this graph using Red and Black colours using a backtracking algorithm. Show the process of colouring it in stepwise manner using state space diagram.

- b) Prove that the full state space tree of finding sum of subset of n elements using backtracking will have (excluding the leaf nodes)2ⁿ-1 nodes. [4]
- c) What are the major drawbacks of branch and bound method?

OR

- Q4) a) State the sum of subsets problem. Write an algorithm to solve this problem using backtracking method. Comment on the time complexity of this algorithm. [8]
 - b) Consider the three objects. The weights and associated values are given below.

	weight	value
O_1	5	6
O_2	4	5
O_3	3	4

Assume the Knapsack capacity m = 7. Solve this 0/1 Knapsack problem using LC branch and bound method. [10]

<i>Q5</i>)	a)	Give an amortized analysis of a k bit binary counter using aggregate method. [6]
	b)	What are tractable and non-tractable problems? Give examples. [7]
	c)	Does randomized algorithm for quick sort, improves the average case time complexity? [4] OR
Q6)	a)	Explain with the help of example the methods of amortized analysis. [6]
	b)	What is an approximation algorithm? How does performance ratios useful in approximation algorithms? [7]
	c)	What are randomized algorithms? Enlist few reasons to use randomized algorithms. [4]
Q7)	a)	Write a simple multithreaded matrix multiplication algorithm based on parallelizing relevant loops of the conventional procedure. [8]
	b)	Explain in brief race condition in multithreaded algorithms. [4]
	c)	What do you understand by <i>spawn</i> and <i>sync</i> keywords used in multithreaded programming? [6]
		OR OR
Q 8)	a)	Write distributed breadth search algorithm. What is its advantage over the conventional approach?
	b)	Write a Rabin-Karp string matching algorithm. Input to the algorithm be: Original text "t" of length n and pattern text being matched is "p" of length m. What is the expected runtime and worst-case runtime of this algorithm? [10]
5		Write a Rabin-Karp string matching algorithm. Input to the algorithm be: Original text "t" of length n and pattern text being matched is "p" of length m. What is the expected runtime and worst-case runtime of this algorithm? [10]
[640)4]-	81 3