1) Answer the questions $Q .1$ or Q.2; Q.3 or Q.4.
2) Neat diagrams mustbe drawn wherever necessary.
3) Figures to the right indictae full marks.
4) Assume suitable data, if necessary.

Q1) a) Given the fastest computer and hypothetically ingitememory, do we still need to study algorithms? Justify.
b) How can we related algorithms to technology?.Briefly explain.
c) Consider an array A of n integers which are already in sorted order. Let x be the number being searched in the array A in a liner fashion. The code fragment performing this task is given below: int lin _ search (int A []) \{

$$
\mathrm{i}=0 ; \text { flag }=0
$$

do $\{$ if $(x=A[1])$ then
return (1); //Nyumber found

) while $(\mathrm{i}<\mathrm{n})$; return (0); // Number not found.
i) Is this code fragment efficient? (We wish to use linear search only). Justify your answer.
ii) Does it attribute to any design issue with respect to iterative algorithm? Briefly explain.

OR

Q2) a) What is iterative algorithm? Explain inferative algorithm design issues using suitable examples.
b) Consider the following algorithm to find the square of a number: int sqr(int n)

$$
\text { if } \mathrm{n}==0 \text {) return } 0 \text {; }
$$

etse return (2n+sqr(n-1)-1)

Prove the conrectness of this algorithm using principle of mathematical induction or otherwise.

Q3) a) Briefly explain P and NP problems in the conte of complexity theory. Give suitable example.

c) Comment on the statement "Bestease analysis of algorithm may not give clear idea of performance"

Q4) a) What is SAT AND 3-SAT problem? Prove that 3-SAT problem is NP ${ }^{\circ}$ complete.
b) What to you understand by best case, worst case and average cease behaviour of an algoxithm? Is an average case efficiency an avérage of best-case, worst-casé efficiencies? Justify answer.

