\square

[6181]-101

B.E. (Computer Engineering)

 DESIGN AND ANALYSIS OF ALGORITHM (2019 Pattern) (Semester-I) (410241)Time : 2½ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Answer $Q 1$ or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data, if necessary.

Q1) a) Write Figh-level description of job sequencing algorithm. Let number of jobs (h) $=5$; Profit vector $P=\{20,15,10,5,1$); Deadline vector $D=\{2,2$, $1,2,3$) Find the feasible solutions. What isthe optimal solution and maximum profit?
b) Consider the following instance of the knapsack problem. Find the optimal solution by using dynamic programming approach.

Item	Weight	Profit
1	2	$\$ 12$
2	1	$\$ 10$
3	3	$\$ 20$
4	2	$\$ 15$

Capacity of the knapsack $=5$.
OR
Q2) a) What is Job scheduling algorithm? How job scheduling algorithm can be solyed using Greedy algorithmic approach? Explair your answer with respect to Principle, control abstraction, time-analysis of control abstraction, of greedy approach for the following instance of Knapsack problem.
Each job is associated with a deadline and profit.

Job	J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{5}$
Deadline	2	1	3	2	1
Profit	60	100	20	40	20

b) Write steps for Greedy approach for Jobsequencing.

Q3) a) What is branch and bound algorithmig strategy? Apply branch n bound algorithmic strategy to solve traveling salesman problem for

b) Explain with suitable example Backtracking: Principle, controlabstraction, time analysis of control abstraction.

Q4) a) Explain the 'branch and bound' approach for solving problems. Write a xbranch and bound algorithm for solving the:011. Knapsack problem. Use the same algorithm to solve the following 0/1 Knapsack problem. The capacity of the knapsack is 15 kg .

Item	A	B	C	D
Profit(Rs.)	18	10	12	10
Weight (Kg.)	9	4	6	2

b) What is sum of subsetneblem? Solve sum of subset problem for following instance using bâcktracking approach
Input: set $[=\{2,0,5,6,8,10\}$, sum $=10$
Q5) a) What is amortizedanalysis? Explain the aggregate method with example.[9]
b) What is Potential function method of amortized analysis? T̂o illustrate Potential method, find amortized cost of PUSH, POP and MULTIPOP stack operations.

OR
Q6) a) What are special needs of embedded algorithme.Which sorting algorithm is best for embedded systems? Why?
b) Explain Randomized and Approximate algorithms.
c) What is randomized algorithm? Give any example of randomized algorithm? Also explain Random variable, Binomial random variable and-Mathematics for Randomized algorithm.

Q7) a) i) Explain an algorithmfor Distributed Minimum Spanning Tree.
ii) Write andexplainRabin-Karp algorithm for string matching. [10]
b) With respecto Multithreaded Algorithms explain Analyzing multithreaded algorithms, Parailel loops, Race conditions.

Q8) a) Write andrexplain pseudo code for Multi-threaded merge sort algorithm.
How parallel merging gives a significant parallelismadvantage over Merge Sort?
b) Fof string matching, working module $\mathrm{q}=$ 11, how many spurious hits Odoes the Rabin- Karp matcher encounters in Text T $=31415926535$
i) $\quad \mathrm{T}=31415926535$
ii) $\quad \mathrm{P}=26$
iii) Here T.Length $=11$ so $Q=11$
iv) And $P \bmod Q=26 \bmod 11=4$
v) Now find the exact(match of $\mathrm{P} \bmod \mathrm{Q} . .$.

