Total No. of Questions : 8]

P3331

[5461]-591

SEAT No. :

[Total No. of Pages : 2

B. E. (Computer Engineering) HIGH PERFORMANCE COMPUTING (2015 Pattern) (Semester - I) (410241)

Time : 2½ Hours]

[Max. Marks : 70

[6]

[8]

- Instructions to the candidates: 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
 - 2) Neat diagrams must be drawn wherever necessary.
 - 3) Figures to the right indicate full marks.
 - 4) Assume suitable data if necessary.

Q1) a) State and explain basic working principle of Super Scalar Processors.[6]

- b) Explain basic working of VLIW Processor.
- c) Elaborate four subclasses of the Parallel Random Access Machine [8]

OR

- **Q2)** a) Differentiate Static and Dynamic mapping techniques for load balancing. [6]
 - b) Write a short note on All-to-one reduction with suitable example. [6]
 - c) Explain any four methods for containing interaction overheads.
- **Q3)** a) Explain Parallel Matrix-Vector Multiplication algorithm with example. [8]
 - b) Explain the Performance Metrics for Parallel Systems. [8] OR

Q4) a) Explain Parallel Matrix-Matrix Multiplication algorithm with an example.[8]

- b) Interpret the effect of Granularity on Performance of parallel execution.[8]
- Q5) a) Compare an algorithm for sequential and parallel Merge sort. Analyze the complexity for the same.
 - b) Modify Depth First Search for parallel execution and analyze its complexity. [8]

P.T.O.

Q6) a)	Discuss the issues in sorting for parallel computers.	[8]
b)	Explain Dijkstras shortest path algorithm.	[8]
Q7) a)	Explain parallelism in Best First Search algorithm. Give an appro- example.	priate [8]
b)	Design a simple CUDA kernel function to multiply two integers.	[6]
c)	List APIs for dealing with CUDA device memory.	[4]
	OR OR	
Q8) a)	Describe CUDA Architecture in details with neat diagram.	[8]
b)	Write advantages and limitations of CUDA.	[5]
c)	Give five applications of CUDA.	[5]
		2°°
	6.4	
	20. ¹ /	
•		
OX.		
[= 4 / 1] =		
[3461]-3	$2 \mathbf{\tilde{x}}$	