Total No. of Questions : 8]	<u>^</u>	SEAT No.:	_
PD4250		[Total No. of Pages :	2
	[6403]-45		

T.E. (Computer Engineering) ARTIFICIAL INTELLIGENCE (2019 Pattern) (Semester - VI) (310253)

		(2019 Pattern) (Semester - VI) (310253)	4
Time	: 21/	/ ₂ Hours] [Max. Marks	: 70
		ons to the candidates:	,
1	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
2	2)	Neat diagrams must be drawn wherever necessary.	
3	3)	Figures to the right side indicate full marks.	
4	<i>1)</i>	Assume Suitable data if necessary.	
Q1)	a)	Explain Alpha-Beta tree search and cut off procedure with example.	[9]
	b)	Explain in details the concept of backtracking and constraint propaga	tion
		to solve n-queens problem.	[8]
		OR	
<i>Q2</i>)	a)	What is constraint satisfaction problem? Explain with example.	[5]
,	b)	Compare and contrast the stochastics games and partial observable gar	nes.
	-)	garage and parameters garage	[4]
	c)	How AI technique is used to solve tic-tac-toe problem.	[8]
	c)	Trow Ar technique is used to solve tie-tae-toe problem.	[O]
(12)	(ء	Evaloia Warners would a comment with DEAS description	103
~	a)	Explain Wumpus world environment with PEAS description.	[8]
	b)	What is knowledge representation in propositional logic? Compare	
		contrast PL and FOLS	[8]
		OR OR	
Q 4)	a)	Explain different inference rules in FOL with suitable example.	[9]
	b)	What is an agent? Explain knowledge based agent with architec-	ture
		diagram, also state the significance of inference engine	[8]
() 5)	(۵	Illustrate with an example the use of the usit vation describe to prove	tha
<i>Q5)</i>	a)	Illustrate with an example the use of the unification algorithm to prove concept of resolution.	
	, (O 0,	[9]
	b)	Define and explain the forward changing with example, analyze	
		differences between forward and backward changing.	[9]
		OR OR	

Q6)	a)	Describe Ontological Engineering wirt. Categories, Objects and Mode	el. 9]
	b)	Define First order Logic, Explain FOL inference for following classifier	s. 9]
		i) Universal Generalization	
		ii) Universal Instantiation	*
		iii) Extential Instantiation	
		iv) Extential Introduction	
Q7)	a)	Explain the algorithm for classical planning with an example.	6]
	b)	Analyze various planning approaches in AI.	6]
	c)	Explain the Hierarchical planning with relevant example.	6]
		ORO	
Q8)	a)	Explain with example how planning is different than problem solving.	6]
	b)		6]
	c)	Explain AI components and AI Architecture.	6]^
		Explain AI components and AI Architecture.	
[640	3]-4	2	