Total No	No. of Questions: 8]	2	SEAT No. :	;
PD42	242		[Total	No. of Pages : 2
	[6403]-	9		
	T.E. (Computer I			
	THEORY OF COM			
	(2019 Pattern) (Semes	ster - V) (310242)	
	9.			
	2½ Hours]			[Max. Marks: 70
	ctions to the candidates:	0 (0 7 (n 0	<i>.</i> O
1) 2)			2.8.	(7)
<i>3</i>)				
<i>4</i>)		iai ks.		~ *
Q1) a)		the followi	ng language	s and show the
	derivation for given string.			[12]
	i) $L=\{w \in \{a,b\}^* w \text{ is string o} \}$		th a and en	iding with' b' }
	show the derivation for "aba		C	L. L. L. 1. 22
	ii) $L = a^nb^{2n}$ where $n > 1$. Show the derivation $RE = (0+1)^*$ Show the derivative $RE = (0+1)^*$			ODDD
b)				n. [6]
U)	$S \rightarrow AA \mid 0$		Normai Iom	i. [U]
	$A \rightarrow SS \mid 1$	0		
	OR	A CONTRACTOR		
Q2) a)	a) Convert the following grammar to	CNF.		[8]
	$S \rightarrow aSa \mid bSb \mid A \mid \varepsilon$,
	$A \rightarrow a \mid b \mid \epsilon$			C
b)				
	production rule in the grammar is	not in GNI	F form, conv	vert it. [10]
	$S \rightarrow XB \mid AA$			
	$A \rightarrow a \mid SA$ $B \rightarrow b$.0')
	$X \rightarrow a$			· Ø.
	11 / 11		-0'	8.
Q3) a)	a) i) Construct PDA for the gi	ven CFG,	and test w	hether 010 ⁴ is
	acceptable by this PDA.		0,00	[10]
	$S \rightarrow 0BB$		2	
	$B \to 0S \mid 1S \mid 0$), (6)	
	ii) Construct PDA for the give	en CFG, ai	nd test whe	ther 'aaabb' is
	acceptable by this PDA.	\bigcirc		
	$S \rightarrow aSb$ $S \rightarrow a \mid b \mid \varepsilon$		<i>\</i>	
b)		$h^n \mid n \searrow 1$	} through er	nnty stack [4]
c)				[4]
,		1	•	

P.T.O.

<i>Q4</i>)	a)	Construct Pushdown automata for $\mathbb{I} = \{0^n 1^m 2^{(n+m)} m, n \ge 0\}$ [6]			
	b)	NPDA for accepting the language $L = \{a^{2m}b^{3m} \mid m \ge 1\}$ [6]			
	c)	NPDA for accepting the language $L = \{a^ib^jc^kd^1 i==k \text{ or } j==1,i>=1,j>=1\}$			
		[6]			
<i>Q</i> 5)	a)	Write short notes on with suitable diagrams. [12]			
		i) Reducibility			
		ii) Multi-tape Turing Machine			
		iii) Multi-head Turing Machine			
		iv) Two way infinite Tape Turing Machine:			
	1 \	v) Multi-tape Multi-head Turing Machine			
	b)	Construct a TM for subtraction of two unary numbers $f(a-b) = c$ where			
		a is always greater than b. Explain the logic of building this Turing machine. [5]			
		OR [3]			
06)	٥)	Draw a Turing Machine to increment a binary number by 1 and			
Q6)	a)	demonstrate with any example. [6]			
	b)	Obtain a Turing Machine to accept the language containing strings of a's			
	U)	and b's that do not end with abb. [7]			
	c)	Construct a TM for the language $L = \{0^n 1^n 2^n\}$ where $n \ge 1$ [4]			
	<i>C)</i>	Construct a TW for the language E = { 0.7.2.} where her			
Q 7)	a)	What Minimum spanning tree problem? Prove that finding MST by using			
21)	α)	Kruskal's algorithm is in class P. [5]			
	b)	What is post correspondence problem? Why is post correspondence			
	0)	problem undecidable? Explain PCP with following instance of the set of			
		the strings A and B. [12]			
		A B			
		1. 1 111			
		2. 10111 10			
		A B 1. 1 111 2. 10111 10 3. 10 0			
		OR OR			
Q 8)	a)	Define and Compare Class P and Class NP Problem with suitable diagram.			
20)	u)	[8]			
	b)	State and explain with suitable example. [9]			
	0)	i) Decidable Problem			
		ii) Undecidable Problem			
		iii) Church-Turing Thesis			
	Church-Turing Thesis				

[6403]-36