P-5341

[Total No. of Pages : 3

[Max. Marks :

[8]

[7]

[6187]-426A

T.E. (Computer Engineering) (Insem.) THEORY OF COMPUTATION (Theory) (2019 Pattern) (Semester - I) (310242)

Time : 1 Hour]

Instructions to the candidates :

- 1) Answer the question of 1 or 2, 3 or 4.
- 2) Near diagrams must be drawn whenever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Draw FA for the following language over $\{0\}$
 - i) Number of 1's is multiple of 3.
 - ii) Number of 1's is not multiple of
 - b) Covert following NFA into equivalent DFA and perform DFA minimization

Q/Σ		1
$\rightarrow P$	{P, Q}	{P}
Q	{ R }	{R}
R	{S}	
S*		{S}
	OR	

Q2) a)

- Construct DFA for checking "whether a string over alphabet $\{a, b\}$ contains a substring *aba*". [5]
- b) i) Differentiate between Moore machine and Mealy machine.
 - ii) Construct Moore machine equivalent to the following Mealy machine. (Show it in transition Diagram)

M = (Q, Σ , Δ , δ , q0) where Q = {q0, p0, pb, Σ = {0, 1), Δ = {y. n} and δ is shown as given below.

P.T.O.

	Input / Output	
States	0	
q0	p0/n	p1/n
PO	p0/y	p1/n
P1	p0/n	p1/y

[5]

5]

c) Convert the following DFA to its Minimized form (Minimization of DFA).

q3

- Q3) a) Prove that LHS RE is equivalent to RHS RE (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)* [5]
 - b) Find a regular expression corresponding to each of the following subsets of {0,1}*
 [6]
 - i) The language of all strings containing exactly two zeros
 - ii) The language of all strings containing at least two zeros
 - iii) The language of all strings that do not end with 01.
 - c) Write a note on Myhill Nerode theorem.

OR

Q4) a) Construct Regular expression for following DFA using Ardens theorem.[7]

- b) i) Write regular expression for a set of strings of 0s and 1s with even number of 0s.
 - ii) Write regular expression for a set of strings of 0s and 1s containing odd number of 1s.

[4]

- c) Choose any one option given below and give the justification "The regular expression $0^*(10^*)^*$ denotes the same set as" [4]
- (1*0)*i) ii) 0+0Bares.C (0+1)*10(0+1)*iii) none of these iv) $\nabla \nabla$ And a stand and a stand a stan [6187]-426A