\square

Time : 2½ Hours]
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figyres to the right side indicate marks.
4) Assume suinable data, if necessary.

Q1) a) Give a Context Free Grammar for the following language.
ii) $\mathrm{L} 2=\left\{a^{\mathrm{i}} b^{j} c^{k} \mid j=i+k\right\}$ such that $i, j, k \neq 0$
b) Reduce the following grammar to Greibach. Normal form.

$$
\mathrm{S} \rightarrow \mathrm{SS}, \mathrm{~S} \rightarrow 0 \mathrm{~S} 101
$$

Q2) a) Show that the following erammaris ambiguous.
S-> iCtS
S-> iCtSeS
S-> a
C-> b
b) Convert the following grammar to Chomsky Normal Form (CNE). [6] $G=(\{S\},\{a, b\}, B, S)$
$\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \mathrm{a}|\mathrm{b}| \mathrm{aa} \mid \mathrm{bb}\}$
(c) Consider the following grammar.
$\mathrm{E}->\mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{id}$
Derive the string id-id*id using
i) Leftmost derivation
ii) Rightmost derivation

Q3) a) Find the transition rules of PDA for accepting a language $\mathrm{L}=\left\{\mathrm{w} \square\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{w}\right.$ is of the $a^{n} b^{n}$ with $\left.n \geq 1\right\}$ through both empty stack and final state and demonstrates the stack operation for the string aaabbb.
b) Design a push down automation to recegnize the language generated by the following grammar:
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{S}|\mathrm{S} \square \mathrm{S}| 4 \mid 2$
Show the acceptance of the input string $2+2 * 4$ by this PDA.
Q4) a) What is NPDA? Construct a NPDA for the set of all strings over $\{a, b\}$ with odd lengthpalindrome.
b) Design a push downautomation to recognize the language generated by the following.
$S \rightarrow S+S \mid S$ ©S|4|2
Show the acceptance of the input string $2+2 * 4$ by this PDA.
Q5) a) Design a Turing Machine for the following language by considering transition table and diagram.
i) TM that erases all non blank symbols on the tape where the sequence of non blank symbols does not containany blank symbol B in between.
ii) TM that find 2 's complement of a binary machine.
b) What is TM? Design TM to checkrvell formedness of parenthesis. Expand the transition for $(())()$ *

Q6) a) How turing machine can be use ©compute the functions? Design turing machine for multiplication oftwo numbers.
b) Elaborate the following terms.
i) Universalfuring Machine (UTM)
ii) Recursively Enunerable Languages
iii) Halting probleño of Turing Machine

Q7) a) Define and Compare Class P and Class NP Problem with stitablediagram.
C) What do you mean by polynomial time reduction? Explain with suitable example.

OR

Q8) a) Explain Satisfiability Problem and SAT Problemand comment on NP Completeness of the SAT Problem.
b) What makes a problem NP-Complete? Howdo we prove a problem is NP-complete? Are all decision problems NP-complete?

