Total No	o. of Questions : 4]		26	SEAT No. :	
P855	6			[Total No.	of Pages : 2
		[Oct 22/TE/Inse	em]-526	-	O
T.E. (Computer Engineering)					
THEORY OF COMPUTATION					
(2019 Pattern) (Semester -I) (310242)					
<i>Time</i> : <i>1</i>	_			[Max	. <i>Marks</i> : 30
	ions to the candidate				
1)	Answer QI or Q2,				
2)	/ F \ _ \ \	t be drawn wherever n	•		
3)		t side indicate full ma	rks.	000	
4)	Assume suitable da	ia, ij necessary.	Ö		
Q1) a)	Convert the giv	en NFA–ε to an NF	FA to DFA.		[10]
	$\begin{array}{c} 0 \\ \\ \\ \\ \\ \end{array}$	B 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO		9-
b)	Define Pumping	g Lemma and apply	it to prove	the following	
	$L = \{0^{m}1^{n}0^{m+n} \mid m\}$	$n>=1$ and $n>=1$ } is	not regular	•	× [5]
Q2) a)		OR ing NFA to DFA			[6]
	0	0.1	0.1	0,000	

0 q₁ 1

Design a Mealy machine that accepts strings ending in '00' or '11'. b) Convert the Mealy machine to the equivalent Moore machine [9]

P.T.O.

Convert the following RE to ε -NRA and find the ε -closure of all the **Q3**) a) states and corresponding DFA. (0+1)*. 1.(0+1)[9] The set of strings over $\{0,1\}$ that have at least one 1. b) **[6]** The set of strings over $\{0,1\}$ that have at most one 1. The set of all strings over $\{0,1\}$ ending with 00 and beginning with 1. OR Consider the two RE r=0*+1*, s=01*+10*+1*0+(0*1)**04*) a) [8] Find the string corresponding to r but not to s. Find the string corresponding to s but not to r. ii) Find the string corresponding to both r & & Find the string corresponding to neither r nor s. Write regular expressions for the following languages over the alphabet $\sum = \{a,b\}$ [7] i) All strings that do not end with 'aa'. The set of all strings ending neither in b nor in ba ii) Ation of the state Find the shortest string that is not in the language represented by iii) the regular expression a*(ab)*b*.

TE/Insem-526