Total No. of Questions : 6]

P67

SEAT No. :

[Total No. of Pages : 2

[Max. Marks : 30

Oct./TE/Insem.-186 T.E. (Computer Engineering) THEORY OF COMPUTATION

(2015 Course) (Semester - I) (310241)

Time : 1 Hour]

Instructions to the candidates:

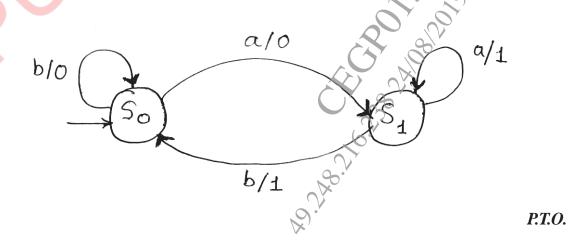
- 1) Attempt questions Q1 or Q2, Q3 or Q4, and Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.

Q1) a) Define the following terms with examplei) DFA ii) NFA iii) epsilon NFA

b) Construct NFA with ε moves which accepts a language consisting the strings of any number of a's followed by any number of b's, followed by any number of c's. [3]

c) Design Finite Automata (FA) for accepting strings over $\Sigma = \{0,1\}$ with even numbers of 0's and odd number of 1's. [4]

OR


(Q2) a) Compare Moore machine and Mealy machine.

b) Construct a Mealy Machine which can output EVEN/ODD if the total number of 1's in the input is even or odd. The input symbols are 0 and 1.[4]

c) Convert the following Mealy Machine to Moore machine

[4]

[3]

Q3) a)	Define the following terms:	[2]
	i) Kleene closure (ii) Positive closure	
b)	i) Illustrate in English the language of the following regular expres	ssion:
	$(1+\varepsilon) (00*1)*0*$	[2]
	ii) Explain in brief, applications of regular expressions.	[2]
c)	Determine a regular expression over the alphabet $\Sigma = \{a, b\}$.	[4]
	i) All strings that contain an even number of 'b's	
	ii) All strings that do not end with 'aa'	
	OR	
Q4) a)	Justify if true or false the following:	[3]
	Every subset of a regular language is regular	
b)	Explain the applications of regular expression in GREP utilities in Un	ix. [3]
c)	Construct minimized DFA accepting language represented by re	-
	expression 0* 1 * 2 *. Convert given regular expression to NFA v	
	moves.	[4]
		[2]
Q5) a)	Discuss applications of Context Free Grammar in XML.	[3]
b)	Construct the Context Free Grammar for the language having any nu of a'a over the set $\Sigma = \{a\}$	
,	of a's over the set $\Sigma = \{a\}$.	[3]
c)	Simplify the grammar:	[4]
	$S \rightarrow Ab, A \rightarrow a, B \rightarrow C b, C \rightarrow D, D \rightarrow E, E \rightarrow a$	ŝ
Q6) a)	Discuss applications of Context Free Grammar in Syntax Analysis	sofa
Q0) a)	Compiler.	[3]
b)	Describe the language L for given Context Free Grammar G	
,	$\{a,b\}, P, \{S\}\}$ where $P = \{S \rightarrow aSb, S \rightarrow ab\}$.	[3]
c)	Optimize the CFG given below by reducing the grammar where	S is a
	start symbol.	[4]
	$S \rightarrow A \mid 0C1$	
	$A \rightarrow B \mid 01 \mid 10$	
	$C \rightarrow \varepsilon \mid CD$	
\mathbf{C}	Optimize the CFG given below by reducing the grammar where s start symbol. $S \rightarrow A \mid 0C1$ $A \rightarrow B \mid 01 \mid 10$ $C \rightarrow \varepsilon \mid CD$ $\rightarrow + + + + + + + + + + + + + + + + + + +$	
	\rightarrow \rightarrow \rightarrow \rightarrow	
	So.V	
TE/Insem186 2		