Total No. of Questions: 6]	SEAT No.:	
P5087	[Total No. of]	Pages : 3

TE/Insem.-636 T.E. (Computer Engineering) (Semester-I) THEORY OF COMPUTATION (2015 Pattern)

Time: 1 Hour]

[Maximum Marks: 30

- Instructions to the candidates:
 - 1) Attempt questions Q.1 or Q.2, Q.3 or Q.4 and Q.5 or Q.6.
 - 2) Neat diagrams must be drawn wherever necessary.
 - 3) Assume suitable data if necessary.
- **Q1)** a) Compare DFA and NFA.

[3]

- b) Construct a DFA to accept strings of 0's and 1's having at least three consecutive 0's. [3]
- c) Construct an equivalent DFA for the following NFA-

[4]

States/∑	0	1
→ p	{p,q}	{q}
9	{r}	{r}
r		(r)

OR

Q2) a) Compare NFA and NFA - ε .

|3

b) Construct a Mealy Machine which is equivalent to the Moore Machine given in the following table: [3]

	Next state		
Present State			Output
	a=0	a=1	
$\rightarrow q_0$	q_3	q_1	0
q_1	q_1	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_0	0

	,	same symbol over the alphabet $\Sigma = \{0, 1\}$. [4]
Q3)	a)	Define the following with suitable example [3]
		i) Regular expression & operations
		ii) Prove or disprove the following (rs+r)* r=r (sr+r)*
	b)	Construct the finite Automata defined over $\Sigma = \{0, 1\}$ for the following Regular expression $1(01+10)^* + 0(11+10)^*$ [3]
	c)	Using the pumping lemma for the regular set, prove that $L = \{a^{i \text{ square}} i \ge 1\}$ is not regular. [4]
	.0	OR
Q4)	a)	What are the algebraic laws of regular expression. [3]
	b)	Convert the following regular expression to ε -NFA. and find the ε -closure of all the states. (0+1)*.1.(0+1) [3]
	c)	Using the pumping lemma for the regular set, prove that $L = \{a^m \ b^n\}$ is not regular. [4]
Q5)	a)	Write in brief about "Sentential form" with reference to context free grammar. [3]
	b)	Write equivalent left linear grammar for the following right liner grammar.
		$S \rightarrow 0A$ $A \rightarrow 10A \in $ [3]
•	c)	Write context free grammar for the following language 0(0+1)* 01(0+1)*1 [4]

Construct the DFA for the language of all strings that begin and end with

c)

Q6) a) Eliminate \in -productions from the grammar G

[3]

 $A \rightarrow aBb|bBa$

 $B \rightarrow aB|bB| \in$

b) Write CFL for following CFG

[3]

 $S \rightarrow aB|bA$

 $A \rightarrow a|aS|bAA$

 $B \rightarrow b|bS|aBB$

c) Write an equivalent left-linear grammar for the right-linear grammar. [4]

 $S \rightarrow 0A|1B$

 $A \rightarrow 0C|1A|0$

 $B \rightarrow 1B|1A|1$

 $C \rightarrow 0|0A$

TE/Insem. -636

-3-