Total No. of Questions : 9]

P9110

SEAT No. :

[Total No. of Pages : 5

[Max. Marks : 70

[6179]-2

S.E. (Computer/IT)/(Computer Science & Design Engg.)/(AI & ML) **ENGINEERING MATHEMATICS-III** (2019 Pattern) (Semester-IV) (207003)

Time : 2¹/₂ Hours] Instructions to the candidates:

- **1**) Question 1 is compulsory.
- 2) Attempt Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q9.
- Neat diagrams must be drawn wherever necessary. 3)
- *4*) Figures to the right indicate full marks.
- Use of electronic pocket calculator is allowed. 5)
- Assume suitable data if necessary. **6**)

Q1) Write the correct option for the following multiple choice questions.

- For a given set of bivariate data x = 2, y = -3. The regression coeffia) cient of y on x is -4. Using the regression equation of y on x, the most probable value of y when x = 1 is [2] i) -1 ii) 1
 - -2iii) iv)
- If probability density function f(x) of a continuous random variable x is **b**) 0.45.48 5 (2)

iv)

1

2

Lagrange's polynomial through the points

[2]

P.T.O.

Using Gauss elimination method, the solution of system of equations d)

$$x + \frac{1}{4}y + \frac{1}{4}z = 1, \frac{15}{4}y - \frac{9}{4}z = 3, \frac{5}{4}y - \frac{19}{4}z = 3 \text{ is } ___].$$
[2]
i) $x = 1, y = \frac{1}{2}, z = \frac{-1}{2}$
ii) $x = \frac{1}{2}, y = 1, z = \frac{1}{2}$
iii) $x = 2, y = \frac{1}{2}, z = 2$
iv) $x = 1, y = 2, z = 3$
e) The first four central moments of a distribution are 0, 0.453, 0.06 and 0.502 The coefficient of Kurtosis β_2 is $__].$
[1]
i) 0.0387 ii) 2.4463
iii) 25.8221 iv) 0.4088
f) If $f(x)$ is a continuous function on $[a,b]$ and $f(a) f(b) < 0$, then to find a root of $f(x) = 0$, initial approximation x_0 by bisection method is $__].[1]$
i) $x_0 = \frac{a-b}{2}$
ii) $x_0 = \frac{f(a) + f(b)}{2}$

iii)
$$x_0 = \frac{a+b}{2}$$

- The first four moments of a distribution about the value 5 are 2, 20, 40 *Q2*) a) and 50. Obtain the first four central moments, β_1 and β_2 . [5]
 - Fit a straight line of the form y = a + bx to the following data by the least b) square method. [5]

 $=\frac{a-b}{a+b}$

[5]

x	-2	1	3	6	8	9
y	17	14	12	ð.	7	6

For a bivariate data, the regression equation of y on x is 8x-10y = -66c) and the regression equation of x on y is 40x - 18y = 214. Find the mean values of x and y. Also, find the correlation coefficient between x and y.

OR

f)

(3) a)	Following are the runs scored by two batsmen in 5	cricket matches.
	Which batsman is more consistent in scoring runs?	[5]

Score by (<i>x</i>)	38	47	34	180	33
Batsman A				6.	
Score by (y)	37	35	41	27	35
Batsman B			X		

[6179]-235

2

b) Fit a parabola of the form $y = a + bx + cx^2$. Using the least square method to the following data. [5]

x	-2	-1	0	1	20
y	-2	5	8	7	2

c) Find the correlation coefficient between age in years (x) and glucose level (y) from the data of 5 people as follows. [5]

x	43	22 4	25	42	58	
y	99	65	79	75	87	
AN AN						

- Q4) a) A fair die is tossed once. Random variable x denote the digit that appears as top face. Find the expectation E(x). [5]
 - b) The number of breakdowns of a computer in a week is a poisson variable with $\lambda = np = 0.3$. What is the probability that the computer will operate. [5]
 - i) With no breakdown
 - ii) At most one breakdown in a week.
 - c) In a certain city 4000 lamps are installed. If the lamps have average life of 1500 burning hours. Assuming normal distribution. [5]
 - i) How many lamps will fail in first 1400 hours?
 - ii) How many lamps will last beyond 1600 hours?

[Given : z = 1, A = 0.3413]

OR

- Q5) a) Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that they are both kings if [5]
 - i) The first card drawn is replaced
 - ii) The first card drawn is not replaced
 - b) A certain factory turning cotter pins knows that 2% of its product is defective. If it sells cotter pins and gurantees that not more than 5 pins will be defective in a box of 100 pins. Find the approximate probability that a box will fail to meet the gurantee quality. [5]

[6179]-235

c) A bank utilizes four windows to render fast service to the customers on a particular day 800 customers were observed. They were given service at the different windows as follows: [5]

