S.E. (Computer/IT)/(Computer Science \& Design Engg.)/(AI \& ML) ENGINEERINGMATHEMATICS-III (2019 Pattern). (Semester-IV) (207003)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks : 70
Instructions to the camdidates:

1) Question Lis compulsory.
2) Attempt Q. 2 or Q.3, Q. 4 or Q.5, Q. 6 or Q.7, Q. 8 or Q9.
3) Neat diagrams must be drawn wherever necessary.
4) Figures to the right indicate full marks.
5) Use of eleetronic pocket calculator is allowed.
6) Assume suitable data if necessary.

Q1) Wriet the correct option for the following multiple choice questions.
a) For a given set of bivariate datan $\bar{x}=2, \bar{y}=-3$. The regression coefficient of y on x is -4 . Using the regression equation of y on x, the most probable value of y when $x=1$ is
i) $\quad-1$
ii) 1
iii) $\quad-2$
iv) 2
b) If probability density fanction $f(x)$ of a continuous random variable x is $f(x)=\frac{x}{8}$ for $0 \leq x \leq 4$, then $p(x \leq 3)=$ \qquad .
i) 0
ii) $\frac{3}{4}$
iii) $\frac{9}{16}$
iv) 1

Lagrange's polynomial through the points

x	0	1	2
y	4	5	12

is given by \qquad .
i) $y=4 x^{2}-3 x+4$
ii) $y=x^{2}+4$
iii) $y=2 x^{2}-x+4$
iv) $0 y=3 x^{2}-2 x+4$
d) Using Gauss elimination method, the solution of system of equations $x+\frac{1}{4} y+\frac{1}{4} z=1, \frac{15}{4} y-\frac{9}{4} z=3, \frac{5}{4}-\frac{19}{4} z=3$ is \qquad .
i) $x=1, y=\frac{1}{2}, z=\frac{-1}{2}$
ii) $x=\frac{1}{2}, y=1, z=\frac{1}{2}$
iii) $x=2, y=\frac{1}{2}, z_{\sqrt{2}}^{2} 2$
iv) $x=1, y=2, z=3$
e) The firstrour central moments of a distribution are $0,0.453,0.06$ and 0.502 . The coefficient of Kurtosis β_{2} is \qquad .
i) 8.0387
ii) 2.4463
iii) 25.8221
iv) 0.4088
f) If $f(x)$ is a continuous function on $[a, b]$ and $f(a) f(b)<0$, then to find a root $\rho f f(x)=0$, initial approximation x_{0} by bisection method is \qquad .[1]
i)! $x_{0}=\frac{a-b}{2}$
ii) $x_{0}=\frac{f(a)+f(b)}{2}$
iii) $x_{0}=\frac{a+b}{2}$
ive $x_{0}=\frac{a-b}{a+b}$

Q2) a) The first four moments of distribution about the value 5 are 2, 20, 40 and 50. Obtain the firsefour central moments, β_{1} and β_{2}.
b) Fit a straight line of the form $y=a+b x$ to the following data by the least square method.

x	-2	1	3	6	8	9
y	17	14	12	80	7	6

c) For a bivariate data, the regression equation of y on x is $8 x-110 y=-66$ and the regression equation of x on y is $40 x-18 y=214$. Find the mean values of x and y. Also, find the correlation coefficiont between x and y.

OR

Q3) a) Following are the runs scored by two batsmen in 5 cricket matches. Which batsman is more consistent in scoring runs?

| Score by $\quad(x)$
 Batsman A | 38 | 47 | 34 | 18 | 33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Score by
 Batsman B | 37 | 35 | 41 | 27 | 35 |

b) Fit a parabola of the form $y=a+b x+c x^{2}$. Using the least square method to the following data.

x	-2	-1	0	1	28
y	-2	5	8	7	

c) Find the correlation coefficient between age in years (x) and glucose level (y) from the dataof 5 peoople as follows.

x	43	$22 y$	25	42	58
y	99	65	79	75	87

Q4) a) A fair die is tossed once. Random variable x denote thedigit that appears as top face. Find the expectation $\mathrm{E}(x)$.
b) The number of breakdowns of a computer in a week is a poisson variable wifh $\lambda=n p=0.3$. What is the probability that the computer will operate.
i) With no breakdown
ii) At most one breakdownin a week.
c) In a certain city 4000 lamps are instálled. If the lamps have average life of 1500 burning hours. A ssuming normal distribution.
i) How many lamps wild fail in first 1400 hours?
ii) How mañy lamps wili last beyond 1600 hours?
[Given: $z=1, A=0344^{\circ} 13$]

Q5) a) Two cards are drawn from a well shuffled packnot 52 cards. Find the probability that they are both kings if
i) The first card drawn is replaced
ii) The first card drawn is not replaced
b) A certain factory turning cotter pins knowsithat 2% of its product is defective. If it sells cotter pins and gurantees that not more than 5 pins will be defective in a box of 100 pins. Find the approximate probability that a box will fail to meet the guranteedguality.
c) A bank utilizes four windows to rendev fast service to the customers on a particular day 800 customers were ρ bserved. They were given service at the different windows as followsi

Window Number	Number of Customers	
1		150
2	250	

Test whether the customers are uniformly distributed over the windows.
[Given $: \chi_{3,0.05}^{2}=7.815$] [Use 5% level of significance]

Q6) a) Find the root of the equation $x^{3}-4 x+1=0$ lying in the interval $\left(0, \frac{1}{2}\right)$ by Bisection method correct upto 3 decimal places (tive iterations only) [5]
b) Find the root of the equation $x^{2}-12=0$ lying. between $(3,4)$ by NewtonRáphson method correct upto 3 decimal placés.
c) Solve by Gauss-Seidel method the ysten of equations.
$5 x-\mathrm{y}=9$
$-x+5 y-z=4$
$-y+5 z=-6$
Take initial solution as $\left(\frac{9}{5}, \frac{4}{5}, \frac{6}{5}\right)$ write numerical calculations correct upto three decimal places?

OR

Q7) a) Solve by Gauss elimination method,
$2 x+y+z=10$
$3 x+2 y+3 z=18$
$x+4 y+9 z=16$
b) Solve by Jacobi's iteration method,
$20 x_{1}+x_{2}-2 x_{3}=17$
$3 x_{1}+20 x_{2}-x_{3}=-18$
$2 x_{1}-3 x_{2}+20 x_{3}=25$
Write numerical calculations correct unto 3 decimal places.
c) Use Regula-Falsi method to find real root of the equation $e^{x}-4 x=0$ lying between $\left(0, \frac{1}{2}\right)$, correct to three decimal.places.

Q8) a) Using Newton's forward interpolationformula, find the population in the year 1895 from given data,
$\left|\begin{array}{l|ccccc}x(\text { year }) & 1891 & 1901 & 1911 & 1921 & 1931 \\ y\left(\text { pop }^{\text {n }}\right) & 46 & 66 & 81 & 5 & 101\end{array}\right|$
b) Evaluate, $\int_{0}^{1} e^{x} d x$ using Simpson's $1 / 3^{\text {rd }}$ rule $(h=0.2)$.
c) Use Eucer's method to solve $\frac{d y}{d x}=x^{2}+y, y(0)=1, h=0.1$ Tabulate values of y for $x=0.1$ to $x=0.4$.
OR

Q9) a) Use Runge-Kutta method of $4^{\text {th }}$ order to solve $\frac{y^{4}}{d x}=y-x, y(0)=1$ at $x=0.2$ with $h=0.2$.
b) Using modified Euler's method find <(0.1), given $\frac{d y}{d x}=1+x y, y(0)=1, h=0.1$ (Two iterations only).
c) Using Newton's backwatd difference formula, find y at $x=3.5$ from following data,

