Total No	o. of Que	estions: 8]	9	SEAT	? No. :	7				
PA-1233			[5925]-255		[Total No. of Pages :	 5				
S.E. (Comp	outer Engg./Co		ce and Desi	gn Engineering/					
Artificial Intelligence & Data Science)										
DISCRETE MATHEMATICS										
(2019 Pattern) (Semester-III) (210241)										
<i>T</i> : 2:	1/ T T					70				
Time: 2		s] he candidates:	/		[Max. Marks : 7	U				
111311 ucu 1)		Q.1 or Q.2, Q.3 or Q	0.4, 0.5 or 0.6 0.7	7 O.8.						
2)		jagrams must be dr								
3)	Assum	ie suitable data whe	rever necessary.		28	1,				
					y, ~O,					
Q1) a)		, 0 -			ctors. In how man	•				
	way	s can they elect a p	president, a vice	president, a se	cretary and treasure					
• .				12.0	[6					
b)	Finc	l eighth term in th	e expansion of (x+y)10	[6					
c)				alls. Find nur	nber of ways 4 ball					
	can	be drawn from th	e box if		[6	.]				
	i)	Two must be wh	ite S							
	ii)	All of them must	t have same colo	our						
		2	OR			0-				
Q2) a)	In h	ow many wave	word the 'HO	I IDΔV' he ar	ranged such that th					
Q2) a)		er I will always co	(/ / /		tanged such that the	_				
b)		ow many ways ca								
ŕ		Market 19	o°			_				
c)	Use	Binomial theorem	n to expand (A'-	-2)°	[6	']				
021		×'	. 1 1		317 32 T 4:6	0				
Q3) a)	Is it	possible to draw a	i simple graph w	ith 4 vertices	and 7 edges. Justify					
	D (1	0.11			[7	_				
b)	Defi	ine following term	is with example.		[5	·]				
	i)	Complete graph			J.					
	ii)	Regular graph		6						
	iii)	Bipartite graph								

Complete bipartitie graph

Paths and circuits

iv)

v)

c) The graphs G and H with vertex sets V(G) and V(H), are drawn below. Determine whether or not G and H drawn below are isomorphic. If they are isomorphic, give a function g: V(G)-> V(H) that defines the isomorphism. If they are not explain why they are not. [5]

Q4) a) Determine which if the graph below represents Eulerian circuit, Eulerian path, Hamiltonian circuit and Hamiltonian Path. Justify your answer [7]

A connected planar graph has nine vertices with degree 2,2,2,3,3,3,4,4,5 b)

[5]

Find

- number of edges
- number of faces ii)
- construct two such graphs
- Explain the following statement with example [5] c) "Every graph with chromatic number 2 is bipartite graph"

Q5) a)

Cor	nstruct	Huffman tree
A	5	6,3
В	6	
C	6	No.
D	11	8.
Е	20	

Explain b)

- Cutset i)
- Tree properties ii)
- Prefix code iii)

c) Give the stepwise construction of minimum spanning tree using Prims algorithm for the following graph. Obtain the total cost of minimum spanning tree. [6]

Q6) a) Using the labelling procedure to find maximum flow in the transport network in the following figure. Determine the corresponding minimum cut. [6]

- b) Define with example.
 - i) Level and height of a tree.
 - ii) Binary search tree.
 - iii) Spanning tree

[6]

	c)	Construct binary search tree by inserting integers in order [6]
		50,15,62,5,20,58,91,3,8,37,60,24
		Find No No of intermed to do o
		i) No of internal nodesii) leaf nodes
		ii) lear nodes
Q7)	a)	Let $R = \{0,60,120,180,240,300\}$ and* binary operation so that for a and
~ /	,	b in R, a*b is overall angular rotation corresponding to successive
		rotations by a and by b. show that (R,*) is a group. [6]
	b)	Following is the incomplete operation table of 4-element group. Complete
	ı	the last two rows. [6]
		c S
	c)	Explain Algebraic system and properties of binary operations. [5]
	,	OR O
Q8)	a)	Explain the following terms with examples
		i) Ring with unity
		ii) Integral domain
		iii) Field [6]
	b)	Consider the set Q of rational numbers and let a*b be the operation
	0)	defined by a*b=a+b=ab [6]
		i) Find 3*4
		ii) 2*(-5),
		iii) 7*(1/2)
		Is (Q,*)a semigroup? Is it commutative?
	c)	Show that $(Z_n \oplus)$ is Abelian group [5]
		Consider the set Q of rational numbers and let a*b be the operation defined by a*b=a+b=ab [6] i) Find $3*4$ ii) $2*(-5)$, iii) $7*(1/2)$ Is $(Q,*)$ a semigroup? Is it commutative? Show that $(Z_n \oplus)$ is Abelian group [5]
		96.

[5925]-255