# S.E. (Computer Engg./Computer Science and Design Engineering/ Artificial Intelligence \& Data Science) DISCRETE MATHEMATICS <br> (2019Pattern) (Semester-III) (210241) 

Time: $\mathbf{2 ¹ ⁄ 2}^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the candidatest

1) Solve Q. 1 or Q.2, Q. 7 or Q.4, Q. 5 or Q. 6 Q. 7 Q.8.
2) Neat diagrams must be drawn whenever necessary.
3) Assume suitabledata wherever necessary.

Q1) a) The company has 10 members on its board of direetors. In how many ways can they elect a president, a vice president, asecretary and treasure.
b) Find eighth term in the expansion of $(x+y)^{1,2} 0^{\circ}$
c) A box contains 6 white and 5 black balls. Find number of ways 4 balls can be drawn from the box if
i) Two must be white
ii) All of them must have same colour

## OR

Q2) a) In how many ways can word the 'HOLIDAY' be arranged such that the letter I will always come to left of letter $L$.
b) In how many ways can one distribute 10 apples among 4 children [6]
c) Use Binomial theorem to expand $\left(\mathrm{X}^{4}+2\right)^{3}$

Q3) a) Is it possible to draw a simple graph with 4 vertices and 7 edges. Justify?
b) Define following terms with example.
i) Complete graph
ii) Regular graph
iii) Bipartite graph
iv) Complete bipartitie graph
v) Paths and circuits
c) The graphs $G$ and $H$ with vertex sets $\mathrm{V}(\mathrm{G})$ and $\mathrm{V}(\mathrm{H})$, are drawn below. Determine whether or not G and , drawn below are isomorphic. If they are isomorphic, give a function $\mathrm{g}: \mathrm{V}(\mathrm{G})->\mathrm{V}(\mathrm{H})$ that defines the isomorphism. If they are not explain why they are not.


OR
Q4) a) Determine which if the graph below reppresents Eulerian circuit, Eulerian path, Hamiltonian circuit and Hamironian Path. Justify your answer [7]
b) A corinlectedplanar graph has nine vertices with degree $2,2,2,3,3,3,4,4,5$ Find
i) Kumber of edges
ii) number of faces
iii) construct two such graphs
c) Explain the following statement with example
"Every graph with chromatic number 2 is bipartite graph"

Q5) a) Construct Huffman tree.

| A | 5 |
| :--- | :--- |
| B | 6 |
| C | 6 |
| D | 11 |
| E | 20 |

b) Explain
i) Cutset
ii) Tree properties
iii) Prefix code
c) Give the stepwise construction of minimum spanning tree using Prims algorithm for the following graph. Obtain the total cost of minimum spanning tree.


Q6) a) Osing the labelling procedure to find maximum flow in the transport network in the following figure. Determine the corresponding minimum cut.

b) Define with example.
i) Level and height of a tree.
ii) Binary search tree.
iii) Spanning tree
c) Construct binary search tree by inserting integers in order

50,15,62,5,20,58,91,3,8,37,60,24
Find
i) No of internal nodes
ii) leaf nodes

Q7) a) Let $\mathrm{R}=\{0,60,120,180,240,300\}$ and* binary operation so that for a and $b$ in $R$, $a * b$ is overall angular rotation corresponding to successive rotations by a and by b. show that $(\mathrm{R}, *)$ is a group.
b) Following is the incomplete operation table of 4-elementgroup. Complete the last two rows.

| $*$ | e | a | b | c |
| :--- | :---: | :---: | :---: | :---: |
| e | e | a | b | c |
| a | a | b | c | e |
| $\mathrm{b}^{\circ}$ |  |  |  |  |
| c |  |  |  |  |

c) Explain Algebraic system and properties of binary operations.

Q8) a) Explain the following terms with examples
i) Ring with unity
ii) Integral domain
iii) Field
b) Consider the set Q of rational numbers and let $\mathrm{a} * \mathrm{~b}$ be the operation defined by $a * b=a+b=a b$
i) Find 3*4
ii) $\quad 2 *(-5)$,
iii) $7^{*}(1 / 2)$

Is ( $\mathrm{Q}, *$ ) a semigroup? Is it commutative?
c) Show that $\left(\mathrm{Z}_{\mathrm{n}} \oplus\right)$ is Abelian group

