Total No. of Questions: 8]	200	SEAT No.:			
PA-1237		[Total	No. of Pages : 2		
	[5925] 259				
S.E. (Computer Engineering)					
DIGITAL ELECTI	RONICS AND LO	GIC DESIG	GN		
(2019 Pattern	(Semester - III)	(210245)			

Time: 2½ Hours]		[.	Max. Marks: 70		
Instructions to the cardidates.					
 Attempt Q1 or Q2, Q3 or Q4 Neat airgrams must be draw 			~		
2) Neat diagrams must be draw3) Assume suitable data, if nec	•	3			
o) Hassing same, y nee	essary.		CV		
Q1) a) What are sequential circ	_	ion table of J	K flipflop. [6]		
b) Convert Following Flip	flops:		[6]		
i) SR to JK	20, 80				
ii) JK to D					
c) What is MOD counter?	Design MOD - 24 co	ounter using	7490. [6]		
	OR				
Q2) a) What are sequential circu	its? Explain SR flipflo	p using a suital	ble example.[6]		
b) Convert Following Flip			[6]		
i) JK to T					
9					
ii) SR to D					
c) Design sequence detect	tor using MS JK flipf	lop for seque	nce 1101. [6]		
		3			
Q3) a) Draw ASM chart for 2-bi	t UP counter using mult	tiplexer contro	oller method.[6]		
b) Draw a block diagram	of the PLA device and	i explain.	[6]		
c) Implement following B	oolean function using	PAL.	[5]		
$F1 = \sum m(0,2,3,4,5,6,$	7,8,10,11,15)	330			
$F2 = \sum m(1,2,8,12,13)$		•			

 $\cap R$

<i>Q4</i>)	a)	what is an ASM Chart? Design the ASM chart for a 2-bit binary counter having one enable line E such that when: [6]
		E = 1 (count enabled) and
		E = 0 (counting is disabled).
	b)	Implement 3 bit binary to gray code converter using PLA. [6]
	c)	A combinational Circuit is defined by the following function: [5]
		$F1(A,B,C) = \sum_{i=1}^{n} m(0,1,3,7)$
		$F2(A,B,C) = \sum_{i} m(1,2,5,6)$
		Implement this circuit with PLA.
<i>Q</i> 5)	a)	Explain the operation of TTL NAND gate. [6]
	b)	Compare TTL and CMOS families and also draw CMOS-NOR Gate.[6]
	c)	Define the following terms and mention the standard values for TTL
		logic Family: [6]
		i) Noise Margin Royar Dissipation
	\Diamond	ii) Power Dissipation
		iii) Propagation Delay
Q6)	a)	Explain TTL open collector. [6]
	b)	Draw and explain the circuit diagram of the CMOS Inverter. [6]
	c)	Draw two input standard TTL NAND gate circuit and explain their
		operation. [6]
<i>Q7</i>)	a)	What is Microprocessor? Explain the system bus in brief. [6]
	b)	Which are various functional units of microprocessors? Explain ALU in brief. [6]
	c)	How Basic Arithmetic operations are performed using ALU 1C 74181?[5]
		OR
Q8)	a)	What is Microprocessor? Explain various operations of the microprocessor. [6]
	b)	Explain the Memory organization of the microprocessor. [6]
	c)	Explain the 4-bit Multiplier circuit using ALU and shift registers in brief.[5]
		~ ~ ~ ~