Total `	Nο	of Questions · 81	^				
Total No. of Questions: 8]				SEAT No.:			
PD4550			F < 40 43 C		[Total No. of Pages : 2		
		-	6404]-54				
		B.E. (Civ	vil Engineering)				
		TRANSPORTA	TION ENGINE	ERING			
		(2019 Pattern) (\$	Semester - VII) ((401002)	4		
				,		1	
Time :	21/	½ Hours]			[Max. Mark	s: 70	
Instru	cti	ons to the candidates:			17	ě	
1		Attempt Q.1 or Q.2, Q.3 or Q4,		2.8.			
2		Figures to the right indicate fu					
3 ₂	_	Use of electronic pocket calcular Assume suitable data, if necessor			0		
5		Neat diagrams must be drawn w		C			
	,	Treat signal must be at a min h	viver ever recessary.		ļ.		
Q1) :	a)	Explain any two important	navement surface	characteris	stics with res	snect	
2 1) (α)	to highway geometric desi	-	A	ties within.	[6]	
1	b)	Distinguish clearly betwe		mar alayat	tion How		
'	U)	elevation is provided in the		iper cicvai	IOII. TIOW S	16]	
	. \	•		. •	1' C1 '		
(c)	Calculate the absolute mini		nimum rac	nus of noriz		
		curve for a design speed of	of 80 kmph.			[6]	
		A	OR V				
Q2) :	a)	State and explain the factor	ors governing the ste	opping sig	tht distance	. [6]	
1	b)	Calculate safe stopping signature	ght distance for a d	lesign spec	ed of 100 k	mph.	
	ĺ	Assume any other data sui		0 1		[6]	
(c)	What are the various veh		cs which	affects the	/	
·	• /	design? Briefly explain.		.05 ((111011	urrouts the	[6]	
		design. Briefly expand.			^		
02)	\	XXII		1 .		F / 7	
~	a)	What are the desirable pro				[6]	
1	b)	Explain the CBR and the	-				
		How are the results of the	test obtained and ir	nterpreted'	?; ~	[6]	

OR

Explain how Impact Test on aggregates is done in the laboratory. How

Q4) a) What is Foamed Bitumen? How foamed bitumen is prepared and where it is used. [6]

b) Explain the Flash and Fire Point Test.

are the results of the test interpreted?

c)

c) Discuss the desirable properties of bitumer. Compare tar and bitumen.[6]

[6]

[6]

Q 5)	a)	Draw a neat cross section of flexible pavement. Explain in brief functions
		of various layers of flexible pavement. [5]
	b)	Explain different stresses in flexible pavements. [6]
	c)	Compute the radius of relative stiffness of 15cm thick cement concrete
		slab from the following data: [6]
		Modulus of elasticity of cement concrete=210000 kg/cm ²
		Poisson's ratio for concrete =0.13
		Modulus of subgrade reaction,
		K =
		i) 3.0 kg/cm^3
		ii) 7.5 kg/cm ³
		OR
Q6)	a)	Explain with sketch equivalent single wheel load ESWL. [5]
	b)	Calculate the stresses at interior and corner regions of cement concrete
		pavement using Westergaard's stress equations. Use the following data:[6]
		Modulus of elasticity of cement concrete=300000 kg/cm ²
		Wheel load=5100kg
		Pavement thickness=18 cm
		Poisson's ratio for concrete =0.15
		Modulus of subgrade reaction 6.0 kg/cm ³
		Radius of contact area =15 cm
	c)	Explain the importance of dowel and tie bars in rigid pavements. [6]
Q 7)	a)	Define Pier. Draw neat sketch of the Hammer head shape pier and
~		Multiple bent Pier. [6]
	b)	A bridge is proposed to be constructed across an alluvium stream carrying
	ŕ	a discharge of 300 m 3 /s. Assume silt factor, $f = 1.10$, determine the
		maximum scour depth when the bridge consists of 5 spans of 20 m
		each. [6]
	c)	Define Rail Guage and explain its types. [5]
		OR
Q8)	a)	Define Abutment. State the various types of abutments. Also State the
		requirements of good Abutments. [6]
	b)	A bridge has a linear waterway of 110m constructed across a stream,
		whose natural waterway is 190m. If the flood flow is 950 Cumecs and the
1		mean depth of flow is 2.75m, Calculate the Afflux under the bridge.[6]
	c)	Explain the function of ballast. [5]
	7	
	-	

[6404]-54