B.E. (Civil Engineering)

 TRANSPORTATIION ENGINEERING (2019 Patern) (Semester - VII) (401002)Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Answer Q1 OD Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Figures to the right side indicate full marks.
3) Use of electonic pocket calculator is allowed.
4) Assume Suitable data, if necessary.
5) Neat diagrams must be drawn wherever necessary

Q1) a) What do you mean by formation width and carriageway width. Draw the typical cross section of road in hilly area.
b) Explain in brief how the superelevation is provided in the field. [6]
c) A vertical summit curye is formed at the intersection of two gradients $+3 \%$ and -5%. Design the dength of the summit curve to provide a stopping sight distance for a design speed of 80 kmph . Assume any other data suitably

Q2) a) Explain any two important pavement surface characteristics withrespect to highway geometric design.
b) Design the rate of superelevation for a horizontar highwåy curve of radius 500 m and speed 100 kmph .
What are the various vehicular characteristies whichaffects the road design? Briefly explain.

Q3) a) What are the desirable properties of the sab grade soil?
b) Explain cutbacks and its types. What are its advantages over conventional bitumen?
c) Explain how Impact Test on aggregates is done in the laboratory. How are the results of the test interpreted?

Q4) a) What is Foamed Bitumen? How foamed bitumen is prepared and where it is used.
b) Define 'flaky' aggregates. Explain the procedure for finding flakiness index in the laboratory.
c) Write a note onGrümbed/Rubber Modified Bitumen.

Q5) a) Draw a neat cross $\operatorname{section}$ of flexible pavement. Explain in brief functions of various layers of flexible pavement.
b) Explain maximum wheel load and contact pressure.
c) Compute theradius of relative stiffness of 15 cm thickcement concrete slab from the following data :
Modulus of elasticity of cement concrete $=210000 \mathrm{~kg} / \mathrm{cm}^{2}$
Poisspn's ratio for concrete $=0.13$
Mordulus of subgrade reaction,
$\mathrm{K}_{\mathrm{K}}=$ i) $3.0 \mathrm{~kg} / \mathrm{cm}^{3}$ ii) $7.5 \mathrm{~kg} / \mathrm{cm}^{3}$
OR
Q6) a) Explain with sketch equivalent single wheel load ESWL.
b) Calculate the stresses at interior regions of cement concrete pavement using Westergaard's stress equations. Use the following data :
Modulus of elasticity of cement concrete $=300000 \mathrm{~kg} / \mathrm{cm}^{2}$
Wheel load $=5100 \mathrm{~kg}$
Pavement thickness $=18{ }^{\circ} \mathrm{cm}$
Poisson's ratio for concrete $=0.15$
Modulus of subgrade reaction $=6.0 \mathrm{~kg} / \mathrm{cm}^{3}$
Radius of contact area $=15 \mathrm{~cm}$
c) Explain the importance of dowel and tie bars in figid pavements. [6]

Q7) a) Explain afflux. List and explain the different formulae used for estimation of afflux.
b) A bridge is proposed to be constructed across an alluvial stream carrying a discharge of $200 \mathrm{~m}^{3} / \mathrm{sec}$. Assume Laceys slit factor equal to 1.0. Find the maximum depth of scour when the bridge consists of 2 spans of 40 m each.
c) Explain the function of ballast.

OR

Q8) a) Explain the following with a neat,sketch :
i) Box Culvert.
ii) Swing bridge.
iii) Suspension bridge.
b) A bridge has finear wâterway of 110 m constructed across a stream, whose natural Waterway is 190 m . If the flood flow is 950 Cumecs and the mean depth of flow is 2.75 m , Calculate the Afflux under the bridge.
c) Define Rail Guage and explain its types.

