P-6524

SEAT No. :

[Max. Marks : 70

[6181]-73

B.E. (Civil Engineering) TRANSPORTATION ENGINEERING (2019 Pattern) (Semester - VII) (401002)

Time : 2¹/₂ Hours]

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right side indicate full marks.
- 3) Use of electonic pocket calculator is allowed.
- 4) Assume Suitable data, if necessary.
- 5) Neat diagrams must be drawn wherever necessary.
- Q1) a) What do you mean by formation width and carriageway width. Draw the typical cross section of road in hilly area. [6]
 - b) Explain in brief how the superelevation is provided in the field. [6]
 - c) A vertical summit curve is formed at the intersection of two gradients + 3% and 5%. Design the length of the summit curve to provide a stopping sight distance for a design speed of 80 kmph. Assume any other data suitably.

OR

- Q2) a) Explain any two important pavement surface characteristics with respect to highway geometric design. [6]
 - b) Design the rate of superelevation for a horizontal highway curve of radius 500m and speed 100 kmph. [6]
 - What are the various vehicular characteristics which affects the road
design? Briefly explain.[6]
- Q3) a) What are the desirable properties of the sub grade soil? [6]
 - b) Explain cutbacks and its types. What are its advantages over conventional bitumen? [6]
 - c) Explain how Impact Test on aggregates is done in the laboratory. How are the results of the test interpreted? [6]

P.T.O.

OR

- Q4) a) What is Foamed Bitumen? How foamed bitumen is prepared and where it is used. [6]
 - b) Define 'flaky' aggregates. Explain the procedure for finding flakiness index in the laboratory. [6]
 - c) Write a note on Crumbed Rubber Modified Bitumen. [6]
- Q5) a) Draw a neat cross section of flexible pavement. Explain in brief functions of various layers of flexible pavement. [5]
 - b) Explain maximum wheel load and contact pressure.
 - c) Compute the radius of relative stiffness of 15cm thick cement concrete slab from the following data : [6] Modulus of elasticity of cement concrete = 210000 kg/cm² Poisson's ratio for concrete = 0.13 Modulus of subgrade reaction, K = i) 3.0 kg/cm³ ii) 7.5 kg/cm³
- Q6) a) Explain with sketch equivalent single wheel load ESWL. [5]

OR

b) Calculate the stresses at interior regions of cement concrete pavement using Westergaard's stress equations. Use the following data : [6] Modulus of elasticity of cement concrete = 300000 kg/cm²
Wheel load = 5100 kg

Pavement thickness = 18 cm

Poisson's ratio for concrete = 0.15

Modulus of subgrade reaction = 6.0 kg/cm^3

Radius of contact area = 15 cm

Explain the importance of dowel and tie bars in rigid pavements. [6]

Q7) a)

Explain afflux. List and explain the different formulae used for [6]

b) A bridge is proposed to be constructed across an alluvial stream carrying a discharge of 200 m³/sec. Assume Lacey's slit factor equal to 1.0. Find the maximum depth of scour when the bridge consists of 2 spans of 40 m each.

c) Explain the function of ballast.

[5]

61

[6181]-73

OR

Sto

[6]

[6]

[5]

- Q8) a) Explain the following with a near sketch :
 - i) Box Culvert.
 - ii) Swing bridge.
 - iii) Suspension bridge.
 - b) A bridge has a linear waterway of 110m constructed across a stream, whose natural waterway is 190m. If the flood flow is 950 Cumecs and the mean depth of flow is 2.75m, Calculate the Afflux under the bridge.

HHH

c) Define Rail Guage and explain its types.

R 19.18.10.28