B.E. (Civil)

AIR POLLUTION AND CONTROL (2019 Pattern) (Semester-VII) (401004A) (Elective - IV)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates:

1) Answer Q1 orQ2, andQ3 or Q4.
2) Figures to the rightindicates full marks.
3) Draw neat figures wherever necessary.

Q1) a) Classify dir pollutants based on sources and origin with examples.
b) Calcurate carbon footprint for house in tons per year for the consumption of ©ollowing resources.

| Resources | Consumption peryear $1 \times$ | CO_{2} emission factor |
| :--- | :--- | :--- | :--- |
| Electricity | 850 KWh | $0.85 \mathrm{~kg} / \mathrm{KWh}$ |
| Petrol | 340 liters | $2.296 \mathrm{~kg} / \mathrm{l}$ |
| Diesel | 220 hiters | $2.653 \mathrm{~kg} / \mathrm{l}$ |
| LPG | 168 kg | $2.983 \mathrm{~kg} / \mathrm{l}$ |

c) Explain the importaprovisions made in Environment (Protection) Act 1986.

OR

Q2) a) List the zones of atmosphere? Explain Troposphere.
b) Calculate the carbon footprint in tons peryear for a vehicle that has travelled for 50 km per day. The vehiete requires 8.5 liter of petrol for 100 km . Assume the CO_{2} emission rate of $2296 \mathrm{~kg} / \mathrm{L}$.
c) Define air quality index (AQI) and explain the significance of it.

Q3) a) Explain radiation and subsidence inversion.
b) An industry utilizes 0.3 ML (nillion liters) of oil fuel per month. It has also been estimated that forevery 1 ML fuel oil burnt in the factory, per year, the quantities of warious pollutants emitted are given as: $\mathrm{PM}=2.9 \mathrm{t} / \mathrm{yr}, \mathrm{SO}_{2}=60 \mathrm{t} / \mathrm{yr}, \mathrm{NO}_{\mathrm{x}}=8 \mathrm{t} / \mathrm{yr}, \mathrm{HC}=0.4 \mathrm{t} / \mathrm{yr}, \mathrm{CO}=0.5 \mathrm{t} / \mathrm{yr}$. Calculate heigh of chimney required to be provided for safe dispersion of pollutants(assuming 300 working days in a year.
c) Explain Coning pume behaviour with the help of neat sketch.

OR

Q4) a) Write the Gaussian model equation and explain each term of it.
b) A stack in an urban area is emitting $80 \mathrm{~g} / \mathrm{s}$ of NO. It hás an effective stack height of 100 m . The wind speed at stack height is $5.65 \mathrm{~m} / \mathrm{s}$. It is a clear summer day with the sun nearly overhead (stability class B). $\sigma_{y}=290 \mathrm{~m}$, $\sigma_{y}=220 \mathrm{~m}$.

Estimate the ground level concentration at,
i) 2 km downwind on the centreline and
ii) 2 km downwind, 0.1 km offthe centreline
c) Define stability of the atimosphere. Explain various stability conditions.

