Total No. of Questions: 8]	200	SEAT No. :
P260		[Total No. of Pages : 3
	[6003]-337	
	T.E. (Civil)	

WASTE WATER ENGINEERING (2019 Pattern) (Semester-II) (301012)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right indicate full marks.
- 3) Draw neat figures wherever necessary.
- 4) Assume suitable data if necessary.
- 5) Use of scientific calculators is allowed
- Q1) a) Explain the importance of secondary treatment and principle of biological treatment. [6]
 - b) An average operating data for conventional activated sludge treatment plant is as follows. [6]

Sewage flow-30000 m³/d, volume of aeration tank-10500m³, influent BOD-200mg/L, effluent BOD-20 mg/L, mixed liquor suspended solids-3000 mg/l, effluent suspended solids-30 mg/L, Waste sludge suspended solids-9500mg/L, quantity of waste sludge-200m³/d. Determine

- i) Food to microorganism ratio
- ii) Sludge age
- iii) Percentage of efficiency of BOD removal
- c) Describe symptoms, causes and remedial measures of sludge bulking in activated sludge process. [6]

OR

- Q2) a) Explain the term Volumetric BOD loading, F/M Ratio, Sludge age in detail.[6]
 - b) The mixed liquor suspended solids. Concentration in aeration tank is 3000 mg/l and sludge volume after 30 minutes of settling in a 1000 ml graduated cylinder is 135 ml. Determine. [6]

P.T.O.

		ii) Required return sludge ratio				
		iii) Suspended solids concentration in recirculated sludge				
	c)	Describe symptoms, causes and remedial measures of foaming in activate				
		sludge process. [6]				
Q 3)	a)	Summarize the principle components and factors affecting oxidation pond				
		design. [5]				
	b)	Design an oxidation pond for the following data. Raw sewage flow-10 MLD,				
		raw sewage BOD ₅ -200mg/L, desired BOD ₅ of treated effluent-20mg/L, BOD				
		removal rate constant-0.1/d, BOD loading rate for the given latitude of				
		the place-250kg/Ha/d, elevation of the place-550 m above MSL. Determine. [6]				
		i) Area of oxidation pond				
	6	ii) Detention time required				
	*					
	\	iii) Dimension of the pond				
	c)	Enumerate principle, advantages and disadvantages of aerated lagoon.[6] OR				
Q4)	a)	Explain with a neat sketch the principle of trickling filter. [5]				
	b)	A single stage trickling filter is designed for an organic loading of 10000				
		kg of BOD in raw sewage per hectare meter per day with a recirculation				
		ratio of 1.1. This trickling filter treats 1.95 MLD of raw sewage with a				
		BOD of 180mg/L. Use NRC formula and determine the strength of the effluent. [6]				
	()	Describe the operational problems and its control in trickling filter. [6]				
05)						
Q5)	a)	Compare the aerobic and anaerobic treatment of wastewater. [6]				
	b)	Design a septic tank for 300 users. Water allowance is 120 L per head per				
	-)	day. Assume suitable data if required. [6]				
	c)	Describe with a neat sketch working of up the anaerobic sludge blanket reactor. [6]				
[600	3]-3	OR 2				
Look	-1 -	- v				

i)

SVI

Q6)	a)	Summarize the features and applications of up-flow anaerobic slueblanket.	dge [6]
	b)	Design the dimensions of septic tank for small colony of 160 person provided with an assured water supply from municipal head works at rate of 120 L per person per day. Assume suitable data if required.	
	c)	Explain the merits of sequential batch reactor over conventional actival sludge process.	ited [6]
Q 7)	a)	Describe the governing factors in anaerobic digesters.	[5]
	b)	Sedimentation tank is treating the flow of 5 MLD containing 275 ppm	n of
		suspended solids. Tank removes around 50% of suspended solids. Calculate the solids of suspended solids.	
		the quantity of sludge produce per day in bulk and weight if i) Moisture content of the sludge is 98%	[6]
		i) Moisture content of the sludge is 96%	
	c)	Explain the stages of digestion in anaerobic digesters.	[6]
		OR	
Q 8)	a)	Indicate the major challenges in sludge management.	[5]
	b)	The moisture content of a sludge is reduced from 95% to 80%. Find	the
		decrease in the volume of the sludge. Explain why dewatering of sludge.	dge
		is necessary.	[6]
	c)	Discuss the reuse opportunities of wastewater in industrial sector	[6]
		B. String	
	.<		
C	7		
•			
		Discuss the reuse opportunities of wastewater in industrial sectors.	
		9.	