1) Answer 0.1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q. 8
2) Figures to the right indicate full marks.
3) IS 456-2000 and non programmable calculator are allowed in the examination.
4) Neat diagrams must be drawn wherever necessary.
5) Mere reproduction from IS Code as answer, will not be given full credit.
6) If necessary, assume suitable data and indicate clearly.

Q1) a) Design any intermediate flight of adog legged staircase of a residential building as shown in Figure 1 with the following data:
i) Floor to floor height $=3.15 \mathrm{~m}$
ii) \quad Rise $=175 \mathrm{~mm}$; Mread $=250 \mathrm{~mm} ;$ Width of flight $=1.0 \mathrm{~m}$
iii) Width of supportingbeams $=230 \mathrm{~mm}$
iv) Live load $=3.0 \mathrm{kN} / \mathrm{m}^{2}$, Floor finish $=0.75 \mathrm{kN} / \mathrm{m}^{2}$
v) Material $=\mathrm{M} 30, \mathrm{Fe} 500$
vi) Draw details of reinforcement. Use LSM approach.
b) What do you meant by doubly reinforced section? Under which circumstances doubly reinforced sections are तheeded. Explain check for deflection for doubly reinforced section.

Q2) Design a simply supported reinforced concrete floor beam B12 as shown in Figure 1 with following data:
i) Center to center Span of beam $\approx 3.73 \mathrm{~m}$
ii) Width of supporting colunmens $=300 \mathrm{~mm}$
iii) Beam width $=230 \mathrm{mmg}$
iv) The beamsupporest two way slab of thickness 120 mm on both sides of beam
v) Live toad $=3 \mathrm{RN} / \mathrm{m}^{2}$; Floor finish $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
vi) The wall ρ on this beam is 150 mm thick and 2.7 m high.
vii) Matexíal - M25, Fe 415
viii)Show details of reinforcement. Use LSM

Q3) Design a continuous floor bean B8-B9-B10 as shown in Figure 1 using IS code coefficients (or moment distribation). Thickness of the all floor slab is 120 mm , live load and floor finish loadon all slabs are $2.5 \mathrm{kN} / \mathrm{m}^{2}$ and $1.5 \mathrm{kN} / \mathrm{m}^{2}$, respectively. The wall on this beam is 230 mm thick and 2.7 m high. Use M 25 and Fe 500 steel. Design longitudinal reinforcement for all the spans and support for flexure. Design shéar reinforcement only for beam B19. Draw neat sketch showing details of main and shear reinforcement. Use LSM-17]

OR
Q4) Continuous RC beam ABCD of rectangular section issimply supported at A and D and continuous over support B and C. Span $A B=4.0 \mathrm{~m}, B C=6.0 \mathrm{~m}$ and $\mathrm{CD}=5.0 \mathrm{~m}$. The beam carries working dead load of $24 \mathrm{kN} / \mathrm{m}$ (including its self-weight) and working live load of $20 \mathrm{kN} / \mathrm{m}$. The beam supports 120 mm slab on one side. Calculate design moment forrspan BC and support C after 20% redistribution of moments by considering proper load case. Design span BC and support C for flexure only. Draw the freinforcement details.
Material- Concrete of grade M30, Fe 500 reinforcement.

Q5) Design an axially loaded short column C10as shown in Figure 1 from terrace to footing level (floor wise four parts of column) for a $\mathrm{G}+2$ building with following details:
i) Floor to Floor height $=3.6 \mathrm{~m}$,consider both ends fixed.
ii) Height of column below plinth $=2.5 \mathrm{~m}$
iii) Live load on alis sabs $\rightarrow 4 \mathrm{kN} / \mathrm{m}^{2}$
iv) Floor Finish L®ad $\xlongequal[\sim]{\sim} 1.5 \mathrm{kN} / \mathrm{m}^{2}$
v) Water Proofing Lead on roof slab $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
vi) Wallethickness $=150 \mathrm{~mm}$ (Internal)
vii) Slab thickness $=130 \mathrm{~mm}$
viii) Size of béams $=230 \times 450 \mathrm{~mm}$

Material M 25 and Fe 500 used. Show detailed floorwise load \& design calculations. Draw section of column showing reinforcement details for each floon ${ }^{\circ}$

OR

Q6) Design a bi-axial short column bydimit state method with material M25 and Fe 500 to carry Ultimate load of 1400 kN . Fáctored moment of $90 \mathrm{kN}-\mathrm{m}$ about major axis bisecting the depth of column and $40 \mathrm{kN}-\mathrm{m}$ about minor axis bisecting the width of colomin. The unsupported length of column is 4.2 m . The column is fixed at one end and hinged at the other. Show details of reinforcement in plan and sectional elevation.
[18]

Q7) Design an isolated pad footing for a working axial load of 800 kN . The.effective length of column is 32 m . Use M30 grade of concrete and Fe 500 grade of steel. SBC of soil is $200 \mathrm{kN} / \mathrm{m}^{2}$. Show detailed design calçlations and reinforcement details in plan and sectional elevation.
[17]

OR

Q8) Design a slab type rectangular combined footing for two columns A and B subjected to working axial load 800 kN and 900 kN , respectively. Center to center to distance between two columns is 28 m . Size of both the columns is $400 \times 400 \mathrm{~mm}$. Safe bearing capacity of soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. Use M30 concrete and Fe 500 steel. Neglect check for one way shear. Show reinforcement details in sectional elevation.

Chart No 1: Interaction chart for combined(bending and compression on rectangular section with equal reinforcement on all sides
 rectangular section with equal reinforcement on all sides

Chart No 3: Interaction chart for combined beading and compression on rectangular section with equal reinforcement on all sides

$\times x{ }_{7}^{x}$

