SEAT No. : \square
[Total No. of Pages : 6

[5870] 012
 T.E. (Civil)
 DESIGN OFRC STRUCTURES
 (2019 Pattern) (Semester - II) (301013)

Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q.No. 1 or Q.No.2, Q.No. 3 or Q.No.4, Q.No. 5 or Q.No.6, Q.No. 7 or Q.No.8.
2) Bold figures to the Right indicate full marks.
3) IS 456-2000 and non programmable calculator áre allowed in the examination.
4) Neat diagrams must be drawn wherever necessary.
5) Merre reproduction from IS Code as answer, will not be given full credit.
6) If necessary, assume suitable data and indicate clearly.

Q1) a) What is Redistribution of moments and what are advantages of it?
b) Design the second flight (midlanding level to first floor level) of a dog legged staircase of public building with the following data:
i) Floor to floor height 3.3 m
ii) \quad Rise $=150 \mathrm{~mm}$; Tread $=300 \mathrm{~mm}$; Width of flight $=1.5 \mathrm{~m}$
iii) Width of mid level landing $=1.5 \mathrm{~m}$
iv) width of floor level landing $=1.8 \mathrm{~m}$
v) Width of supporting beams $=300 \mathrm{~mm}$
vi) Supporting beams are provided at the outer edges of both landings
vii) Material = M30, Fe 500
viii) Draw details of reinforcement. USe LSM approach.

Q2) a) Explain the terms bond stress and development length. Calculate development length for 20 mm diameter bar in tension by LSM approach.
i) for M25 concrete and Fe 500 steel.
ii) for M20 concrete and Fe 250 steel.
b) Cantilever reinforced concrete floor beam with following data:
i) Cetter Spann of beam $=2.5 \mathrm{~m}$
ii) Widthor supporting columns $=450 \mathrm{~mm}$
iii) Bean width $=230 \mathrm{~mm}$
iv) The beam is subjected to working dead load of $20 \mathrm{kN} / \mathrm{m}$ (including its self-weight) and working live load of $18 \mathrm{kN} / \mathrm{m}$.
v) Material - M25, Fe 500
vi) Design longitudinal reinforcement (with curtailment) and shear reinforcement.
vii) Show details of reinforcement: Use LSM

Q3) Design a continuous beanABCD\{or flexure and shear using IS Code method. $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=4.5 \mathrm{~m}$. The beam $/$ carries dead load of $20 \mathrm{kN} / \mathrm{m}$ (including it's self-weight) and live load of $12 \mathrm{kN} / \mathrm{m}$. Take material M25 and Fe 500. Show the reinforcement detail inlongitudinal section and cross-section at contininuous supports and at mid spants. Use LSM.
[17]

OR

Q4) Continuous RC beam ABCD of rectangular section is simply supported at A and D and continuous over support B and C. Span $A B=5.0 \mathrm{~m}, \mathrm{BC}=4.0 \mathrm{~m}$ and $C D=6.0 \mathrm{~m}$. The beam carries working dead load of $2.0 \mathrm{kN} / \mathrm{m}$ (including its self-weight) and working live load of $12 \mathrm{kN} / \mathrm{m}$. The beam supports 120 mm slab on one side. Calculate design moment for all spans and supports after 20% redistribution of moments. Design alispans and supports sections for flexure only. Draw the reinforcement details.

Material - Concrete of grade M30, Fe 500 reinforcement.

Q5) a) Explain different parameters of interaction curves for the design of column.
b) Design a uni-axial short columnby limit state method with material M25 and Fe 500 to carry a working load of 800 kN , working moment of 60 $\mathrm{kN}-\mathrm{m}$ about major axis bisécting the depth of column. The unsupported length of colurn. is 4.0 m .The column is fixed at both the ends. Show detailed desigecalculations and reinforcement details.
[13]

OR

Q6) Design a bi-axial shiort column by limit state method with material M20 and Fe 500 to garry Ultimate load of 1600 kN . Factored moment of $110 \mathrm{kN}-\mathrm{m}$ about major axis bisecting the depth of column and $60 \mathrm{kNJ}-\mathrm{m}$ about minor axis bisecting the width of column. The unsupported length of column is 3.6 m . The column is fixed at both the ends. Show detaits of reinforcement in plan and séctional elevation.

Q7) Desigh an isolated pad footing for a working axial load of 800 kN . Use M25 grade of concrete and Fe 500 grade of steel. SBC of soil is $200 \mathrm{kN} / \mathrm{m}^{2}$. Show detailed design calculations and renfforcement details in plan and sectional elevation.
[17]

Q8) Design a slab type rectangular combined footing for two columns A and B_{0} subjected to working axiat load 750 kN and 800 kN , respectively. Center to center to distance between the columns is 2.5 m . Size of both the columnsis $380 \times 380 \mathrm{~mm}$. Safe bearing capacity of soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. Use M25 conciete and Fe 500 steel. neglecteheck for one way shear.

Chart No 1: Interaction chart for combined bending and compression on rectangular section with equal reinforcement on all sides

Chart No 2: Interaction chart for combined bending and compression on rectangular section with equal reinforeement on all sides

Chart No 3: Interaction chart for combined bending and compression on rectangular section with equal reinforcement on all sides

